Port Digitalization Through an Activities Scenario Model as a First Step for a Digital Twin of Port

Towards a smart hyperconnected era of efficient and sustainable logistics, supply chains and transportation

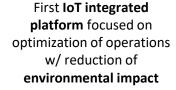
IPIC 2021 - 8th International Physical Internet Conference

June 14-16, 2021 | Virtual

Port IoT for Environmental Leverage

Port Environmental Index

(PEI) as a quantitative



TOPIC: MG-7-3 – The Port of the future

Duration: May 2018 – September 2021

15 partners from 7 countries

Secured dashboard with operational tools for decision support (real time monitoring and predictive analysis)

What is PIXEL?

Quantitative real-time measure of the port environmental performance using the existing sensor infrastructure

Intelligent road traffic modelling and predictions for a greener and more efficient port-city relation

Powerful AI algorithms improving business intelligence from Maritime Data **Analytics** from vessel calls and AIS

Digital transformation of the port supporting **Energy, Pollution** and COVID19 **Simulation**

Comprehensive and flexible Big **Data Information Hub** with APIs

Open source IoT **Data Acquisition** Agents based on smart city technology

Potential for new functionality with a **Maritime Model Orchestrator**

Easy dashboard, & alerts with potential to PCS integration

Horizon 2020 research and innovation programme

PIXEL Platform a first step for a Digital Twin of Port

A Digital Twin is a digital representation of an existing physical element that aimed at modelling and monitoring its behavior and status

Data acquisition and management

Data collection. mapping, processing, transmission, filtering, cleaning...

IoT sensors, comm. network technologies. blockchain, cameras...

Modelling the reality

Inferring the behaviour of an action around the element.

Geometrical model, Al, ML mechanical model. blackbox model, linear.

Simulation and forecasting based on such models

Predict or replicate the behaviour of those actions based on the models.

Discrete event simulation, ML inference, neural network result, outlier detection...

Presentation and visualization of the "physical element"

Utilisation of interactuable elements to represent the element and its actions

Dynamic 3D representation, dashboards, tactile elements, wearables.

PIXEL Platform a first step for a Digital Twin of Port

Security Framework

Information Hub

Storage, Long-term persistence Indexing, catalogue

Operational Tools

Models
Predictive algorithms

Dashboard

Widgets Global framework

Data Acquisition Layer

Agents to retrieve

Agents to retrieve

Pre-processing

Agents to retrieve periodic data

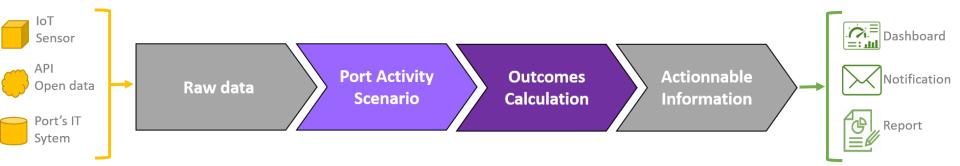
Secure IoT solutions for port ecosystem operations

Modular system allowing to integrate with existing systems

Pluggable data collection agents to easily add new data sources

Powerful **big data engine** addressing the specific challenges of ports

Customizable to add new computational models



The Port Activity Scenario (PAS) model

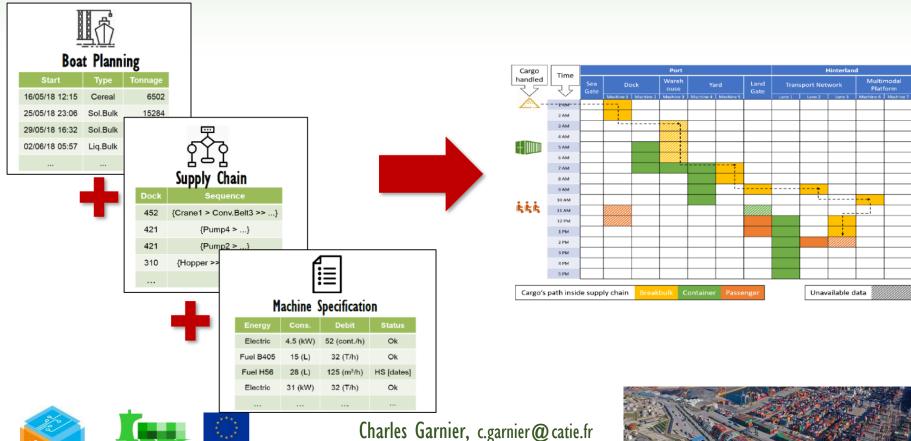
Approach: Convert raw data into actionable knowledge through chained elementary transformations. Tools to calculate, estimate or predict impacts on energy consumption, transport networks and environmental pollution of port activities

Build the PAS

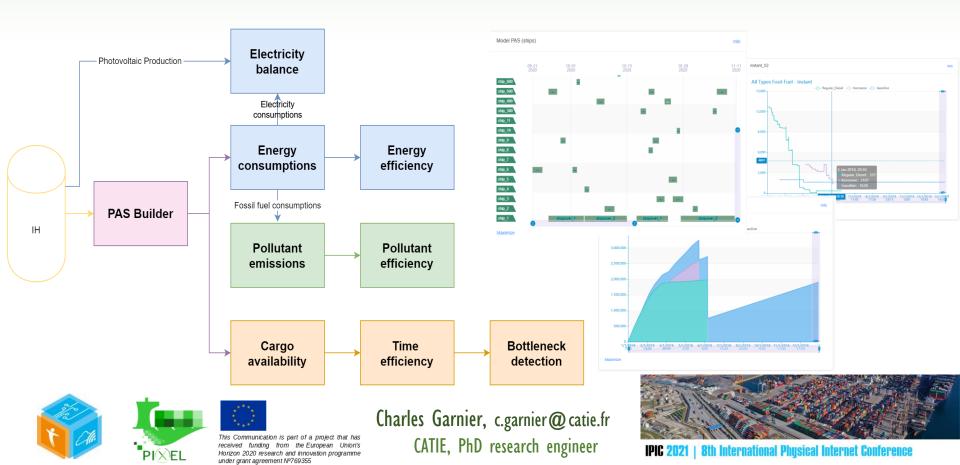
For the considered set of hypothesis, list every port operations and project them across the time

Calculate the outcome

For every activity of the PAS, determine the resources use and externalities.



The Port Activity Scenario (PAS) model



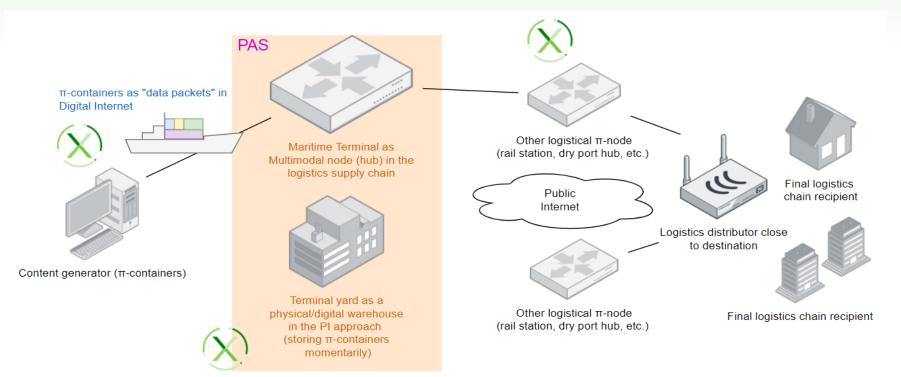
This Communication is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº769355

CATIE, PhD research engineer

PAS as an element for logistics innovation

Contribution to the Physical Internet Roadmap

- IoT framework to achieve end-to-end communication and sharing of data/processes between diverse entities and actors of the logistics supply chain.
- PIXEL is prepared to bundle the components of the PI (pi-containers, pi-trucks, pi-trailers, pi-conveyors, etc.) as data pieces to be managed by the Context Brokers and Information Hubs (single-instance per each deployment in a node).
- Due to the multi-actor approach of the PIXEL platform, stakeholders could share information (easy-to-connect APIs) in real time, letting various profiles of port managers to analyze and visualize the information.



PAS as a node of the physical internet

received funding from the European Union's

Horizon 2020 research and innovation programme under grant agreement Nº769355

Conclusion

- An open-source IoT platform that allows to gather and store data coming from heterogeneous sources.
- PAS model is able to simulate and predict the port activities and can be seen as a first step towards a Digital Twin of a port.
- PAS allows to:
 - Predict the behavior of the pi-node (terminal) with regards to packet (pi-container) throughput;
 - Forecast how time it will take to operate each unit;
 - Know how much energy will be used to do so and the internal operations required,

THANK YOU

Get to know us at pixel-ports.eu

pixel-ports.eu

@PortsPixel

@PIXELPORTS

@pixel-ports

Project Coordination iglaub@upv.es

Innovation Management joao.pitacosta@xlab.si

Technical Coordination mllorente@prodevelop.es

Charles Garnier, c.garnier@catie.fr CATIE, PhD research engineer received funding from the European Union's Horizon 2020 research and innovation programme

