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Abstract—In this paper we present a novel system for pre-
dicting vessel turnaround time, based on machine learning and
standardized port call data. We also investigate the use of specific
external maritime big data, to enhance the accuracy of the
available data and improve the performance of the developed
system. An extensive evaluation is performed in Port of Bordeaux,
where we report the results on 11 years of historical port call data
and provide verification on live, operational data from the port.
The proposed automated data-driven turnaround time prediction
system is able to perform with increased accuracy, in comparison
with current manual expert-based system in Port of Bordeaux.

Index Terms—Turnaround time, ETD, port, prediction, FAL
forms, machine learning, AIS, port of the future

I. INTRODUCTION

The maritime industry has seen a considerable growth in
recent years across all the major cargo types, with more than
90% of the world’s trade carried by sea [1]. In fact, accord-
ing to the latest United Nations Conference on Trade and
Development (UNCTAD) [2], maritime trade is expected to
expand at an average annual growth rate of 3.5% between 2019
and 2024. According to the UNCTAD report [2], there were
over 95.000 ships in early 2019 and there is a stable increase
of the total capacity over the last decades. The increasing
number of ships and their capacity is putting pressure on ports,
especially on port turnaround times, which is according to the
UNCTAD [2], one of the main indicators of ports efficiency
and trade competitiveness. UNCTAD now performs novel
analysis using Automatic Identification System data (AIS) [3],
to calculate the vessel turnaround time, based on vessel type
and country. According to the UNCTAD report [2], ships spent
in port a median time of 23.5 hours (0.97 days), during one
port call. Dry bulk carriers spent the most time in port, with
a median of 2.05 days, almost three times the median time
of a container ship. Reducing the time in port, reflects in the
ability to accommodate more ships, resulting in an increased
efficiency of the whole maritime chain.

Ports internal data can provide plenty of information to
analyze and optimize operations in the port. One of the richest
and most general information, standardized across all of the
ports, is that of port calls. Vessels are usually announced at
least 24 hours prior to the port arrival. This is not only due to
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port authority regulations, but also due to national maritime
agencies, that require this kind of information to be submitted
before arrival to their territorial waters. The forms that need to
be submitted are standardized and were agreed in a Convention
on Facilitation of Maritime Traffic (FAL) [4]. One of the main
objectives was to standardize the procedures and declarations
that need to be submitted to the public authorities in order to
prevent unnecessary delays in maritime traffic. Additionally,
business metrics and data driven decisions can be made, based
on the extracted insights from the port call data. Detailed
descriptions of the loaded and unloaded cargo and the amount
of it, together with arrival and departure times, can be directly
used to provide port operators with more accurate predictions
of turnaround times.

In this work we explore the use of FAL forms data, captured
in Port Community Systems (PCS) for machine learning (ML)
based vessel turnaround time prediction. PCSs are robust,
proprietary legacy port IT systems [5], that are connected to
governmental, as well as other maritime business entities, in
order to reduce clerical burden and encourage multiple use of
data. The problem tackled in this work, can also be described
as predicting vessel estimated time of departure (ETD), as
we are able to provide this information directly from the
predicted vessel turnaround time. FAL forms data represents
standardized data, captured similarly in all of the ports around
the world. Rich information about the port call, including the
type and amount of loaded and unloaded cargo represents an
untapped potential not only for the case of ETD prediction, but
also for a wider port operations analysis, which could provide
actionable insights and is also demonstrated in our work. We
also investigate the use of external environmental data, such as
weather data, as well as Port of Bordeaux specific tidal level
data. Additionally, we explore the use of AIS data to facilitate
real-time retrieval of vessel entry and exit times, as well as to
mitigate the problems of missing data. Our main contributions
can be summarized as follows:

• To the best of our knowledge, we present the first ML
based system for vessel turnaround time prediction, based
on FAL forms operational data.

• We perform an extensive exploratory data analysis (EDA)
and feature engineering, offering a level of explainability,
by measuring feature importance.

• We evaluate state-of-the-art ML methods on large-scale
historical, as well as operational (live) data from the Port



of Bordeaux.
• We investigate the use of external data, such as weather,

tidal and AIS data, in order to improve the performance
and robustness of the proposed system.

II. RELATED WORK

Optimizing vessel turnaround time is a well-known research
problem, that has been tackled implicitly in the literature
and in practice by optimizing berth scheduling [6]–[9]. Berth
scheduling is usually defined as a multi-objective optimization
problem, by optimizing different port business performance
indicators (e.g. vessel turnaround time, revenue, customer sat-
isfaction, utilization of the equipment). Some of the objectives
are conflicting and optimal decisions need to be taken - the
so called Pareto optimal. Such modeling tasks are usually
performed with certain assumptions. The three most critical
assumptions, according to [8] are related to berthing space
(continuous vs. discrete), vessel arrivals (static vs. dynamic)
and handling time (static vs. dynamic). Berths are usually
modeled in a discrete space, as a finite set. In a static vessel
arrival modelling, all the vessels are assumed to be already
in the port, while with dynamic modelling, not all the vessels
have arrived, but their arrival times are known in advance.
Static handling time assumes that handling time will be pro-
vided manually, while in a dynamic setting, the handling time
is modelled as a function of some operational parameters (e.g.
number of quay cranes). In comparison with berth scheduling
modeling objectives, we address vessel turnaround time di-
rectly, based on standardized operational live and historical
data from the ports.

The proposed vessel turnaround time prediction system
presents an independent, pluggable unit, that can be used
as a standalone solution, as part of the existing Port Com-
munity Systems (PCS), or connected and also available to
other maritime transport stakeholders. Unreliable arrival and
handling times of a vessel have also been recognized in
the berth scheduling research [10], where time buffers were
considered to be inserted between the vessels, occupying the
same berth. In comparison, the proposed system can be used in
existing berth scheduling solutions, by replacing simple sub-
optimal functions for handling time modeling (e.g. number
of quay cranes) or time buffering solutions, with the actual
operational, data driven solutions for vessel turnaround time
prediction. Proposed system will also complement already
available systems for vessel arrival prediction (ETA), also
based on FAL forms data [11].

Automatic Identification System (AIS) data from the vessels
is also being utilized in the maritime domain for maritime
traffic pattern analysis [12], as well as in real-time based
systems for vessel destination and ETA prediction [13], [14].
We also make use of AIS data in our proposed ETD prediction
system, to supplement missing data about vessel entry or exit
times. Real-time AIS data also improves the timeliness of ETD
predictions. Similar to works on ETA [15], [16], we also utilize
external meteorological and Port of Bordeaux specific tidal
level data.

III. PORT OF BORDEAUX

The Port of Bordeaux (GPMB) is located on the Atlantic
coast, just outside Bordeaux, whose population will shortly
reach 1 million. GPMB is the focal point of a dense river,
sea, air, rail and road traffic network. GPMB is a core port
of the Trans-European Network of Transport (TEN-T) and
belongs to the Atlantic Corridor. GPMB ranks 7th of French
ports, as it totals 2% of French maritime traffic (i.e. 8 to
9 Mt/year), heavily based on hydrocarbon goods (fuels) and
cereals. Severe environmental regulations lead to a demanding
operational processes, allied with a strong financial pressure
for the port authority. GPMB has developed its own Port
Community System (VIGIEsip) in 2014 to organize port calls,
to bring digital services to the port and to comply with
the single window directive. This important step of the port
digitalization implements the PCS approach as in [5], taking
into account the specific challenges of the port and is also the
adopted PCS by 14 other French ports.

Port of call means an intermediate stop for a ship on its
scheduled journey. It means also hours of idle time for ships
during the processing of the cargo. Vessel idle time has a
significant cost for the customers of the port, as it reduces the
vessel utilization and cargo turnover rate. In addition, there
may be unforeseen circumstances, delaying the departure of
the ship. This is the reason why the ports seek better accuracy
on this knowledge, aiming to reduce the turnaround time. The
turnaround time is one of the least well-known information
sources in GPMB. It is difficult to properly determine this
measure because GPMB is in an estuary and the internal and
external information it relies on (e.g. commodity category,
amount of cargo, tidal levels and weather), is hard to reliably
incorporate into current simple manual models. The current
approach relies on static GPMB performance metrics for
specific cargo processing capabilities (e.g. tonnage per hour
for a specific cargo, available manpower), cargo tonnage to
be processed and the next high tide time. Shipping agents
provide this information through VIGIEsip, after discussion
with terminal operators, which provide information about the
available manpower and equipment, that can be allocated to
the port call.

Uniqueness of the GPMB, their specific location and non-
deterministic port call operations (first come, first served
model) represents a significant challenge, indicating an upper
bound for the predictive performance of turnaround time pre-
diction. In comparison with currently adapted manual models,
we propose to utilize a vast amount of historical port call
data, captured in VIGIEsip, to increase GPMB operational ef-
ficiency. The use of standardized data ensures the applicability
of the proposed solution also to all the other ports, with the
same proposed methodology.

IV. METHODOLOGY

A. Input Data

Port call data, as captured in the PCS of the Port of
Bordeaux, VIGIEsip, represents the main source of the data.
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Fig. 1: Developing a predictive model on structured data consists out of several steps. Data preparation, which includes data
cleaning, exploratory data analysis and feature engineering, represents the majority of the machine learning workflow. This
then presents an input to the machine learning model, which trained model is evaluated on left-out validation and test data.
The process is usually repeated in an incremental way, to improve the performance of the deployed model.

We collected 11 years of historical port call data, between the
beginning of 2008 and the end of 2018. The data represents a
subset of the data, that is extracted from the FAL forms (FAL
form 1 and 2) and the main attributes represent the vessel
unique identifiers, amount and the type of the loaded and
unloaded cargo, arrival berths and the exact times of arrival
and departure. In total, we collected 6055 port calls, which
consisted out of 1905 unique vessels, unloading 55 and loading
46 types of unique cargo types. Average turnaround time of the
port calls in historical data is 53 hours. Additionally, GPMB
provided live access to port call data, including port turnaround
time predictions, which was used to evaluate the proposed
method on live operational data. In the live operational data
we noticed missing entry and exit times, or their delayed
availability. To solve the problem, we combined port call
data with AIS data, obtained from AISHub1. Obtaining vessel
arrival and departure times from AIS data represents an
universal approach, providing real-time availability of arrival
and departure data and also serves as a verification of FAL
forms data.

We also combine the available maritime data with external
weather and tidal information data. Our hypothesis is that
weather has influence on port operations: especially strong
winds affecting crane operations and rain affecting dry cargo
operations. We obtained hourly aggregated historical weather
data (temperature, wind, precipitation) from the Dark Sky2.
Due to the specifics of GPMB (located about 90 km deep in
the Gironde estuary) and their dependence on tidal levels -
presented in Figure 2, we also include tidal level information
from multiple sensors along the Gironde estuary.

Based on a list of holidays in France3, for all the years of
the historical data, we evaluated their influence on turnaround
times. Because of the average turnaround time of more than 2
days, we added Boolean features, indicating the presence of a
holiday in ±3 days from the vessel arrival.
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Fig. 2: Vessels arrivals, departures and water height in Bassens
for 4 days. Tidal level has a significant impact on turnaround
time, as the vessels arrive and depart predominately on high
tides.

B. Data Preparation

The data that was used, represents operational data from
GPMB, thus some data preparation is needed for stable model
training and increased generalization performance. We first
removed all the vessels without any cargo to load and unload
(i.e. empty ships). We also removed ships, whose turnaround
time was less than 1 hour and those of which turnaround time
exceeded two times the standard deviation from the median,
of the corresponding cargo type (i.e. outliers, corresponding
to erroneous inputs in VIGIEsip). We also removed vessels
calls, with combinations of loading and unloading cargo
types, that occurred in less than 5 occurrences. This filtering
procedure reduced the number of port calls to 5492, with 1768
unique vessels and 34 unloading and 32 loading cargo types,
respectively.

Data cleaning and constructing meaningful features, that
hold predictive value, represents a major part of the machine-
learning workflow, presented also in Figure 1. We investigate
the data in exploratory data analysis, where the influence of
different parameters on turnaround time is analysed. Some

1http://www.aishub.net/
2https://darksky.net/
3https://github.com/dr-prodigy/python-holidays
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Fig. 3: Influence of the most frequent unloading cargo types on the turnaround time. The visualization represents variability
of the amount of cargo on the vessel (a) and per-tonnage normalized processing time (b).

results of this analysis are presented in section V-A. Besides
identifying predictive features, encoding them appropriately is
also very important. Timestamp data (e.g. arrival time) needs
to be transformed into multiple categorical features (e.g. day
of the week, hour). Most of the machine learning models
also require the data to be normalized and categorical features
transformed into numerical ones (e.g. one-hot-encoding). We
instead used the method, described in the next section, that
omits most of such requirements and provides out-of-the-box
state-of-the-art performance.

C. Predictive Model

We utilized recently presented gradient boosting based
method CatBoost [17], which properties offer the most con-
venient use in operational environments with heterogeneous,
structured data. The CatBoost method uses decision trees as
base predictors and thus omits the need for data normalization
as the preprocessing step. CatBoost also handles categorical
features during training, as opposed to preprocessing time,
thus omitting the need for special transformations. Decision
trees also have the increased level of explainability of the
results, in comparison with other black-box methods (e.g.
neural networks). CatBoost also outperforms other state-of-
the-art gradient boosted decision methods (e.g. XGBoost [18])
in terms of predictive accuracy and speed, out-of-the-box,
without the need for extensive hyperparameter fine-tuning.4

Nevertheless, we analyse the importance of hyperparameters
on our data, using Grid Search parameter tuning procedure,
provided with the open-source CatBoost implementation5 and
present the results in section V.

D. Evaluation

To evaluate the proposed method, we used a combination of
historical and live operational data from the port. Turnaround
time is computed as a difference between arrival and departure
times. To effectively use the available data, we evaluated
the method using the cross-validation procedure with a 1

4https://catboost.ai
5https://github.com/catboost/catboost

year left-out strategy on historical data. In this way, the
proposed method was evaluated on all of the 11 years of
data. We evaluated the method on the splits, using the Mean
Absolute Error (MAE), Root Mean Square Error (RMSE)
and Mean Absolute Percentage Error (MAPE). With such
combination of evaluation metrics, we ensure explainability
of the performance (MAE, MAPE), as well as to evaluate
the influence of the large errors (RMSE). The best performing
model on historical data was also evaluated on live operational
data of 93 vessels from the port. In this case, the comparison
was also made against the expertly provided predictions from
the port, based on their current manual approach, described in
section III.

V. RESULTS

A. Exploratory Data Analysis

Mon Tue Wed Thu Fri Sat Sun
0

24

48

72

96

120

144

168

Holiday False True

Tu
rn

ar
ou

nd
 ti

m
e 

[h
]

Fig. 4: The influence of the arrival day and holidays on the
turnaround time. The increase is visible at the end of the week
and on holidays.

In order to develop accurate predictive models for a specific
domain, understanding of the target domain is needed, as well
as the influence of operational parameters on the target variable
to be predicted (i.e. turnaround time). This is achieved by the
know-how of domain experts and the analysis of the available
historical data. We first analyse how specific cargo to be
loaded or unloaded influences turnaround time. As presented
in Figure 3a, different cargo types have different processing



TABLE I: Evaluation on historical data for 10 most frequent unloading (U) cargo types (a) and loading (L) cargo types (b).

(a)
MAE [h] RMSE MAPE [%]

Unloading cargo type CatBoost Linear R. CatBoost CatBoost

BUTADIENE 2.51 4.46 4.33 13.87
METHANOL 2.69 6.18 4.25 8.51
SOYA OIL 7.16 8.47 13.28 22.49
CONTAINERS 7.23 8.42 9.79 22.81
RAPESEED OIL 11.12 11.68 17.84 22.81
SALT 16.67 19.30 25.40 41.15
BULK. FRETILIZERS 17.49 18.76 27.87 34.84
BULK UREA 23.19 26.70 32.03 37.07
NORTH SAWS 24.87 26.83 33.31 45.84
SUNFLOWER BULK 83.03 82.37 105.47 41.53

Top 10 cargo types (U) 14.62 16.33 27.46 28.43
All cargo types (U) 15.75 17.55 28.22 30.46

(b)
MAE [h] RMSE MAPE [%]

Loading cargo type CatBoost Linear R. CatBoost CatBoost

CONTAINERS 7.24 8.41 9.79 22.79
BULK CORN 8.65 10.51 13.89 29.64
PROD.CHIM.LIQ. AUTRES 9.42 11.48 15.58 32.78
BULK WHEAT 10.04 11.53 14.98 31.34
OTHER MINERALS 12.12 13.55 17.53 38.25
SUNFLOWER BULK 13.34 14.62 21.41 38.88
SUNFLOWER OIL 13.64 13.54 18.58 29.27
SCRAP 22.60 26.50 32.22 34.15
SUNFLOWER PELLETS 23.06 24.47 33.02 35.75
FAME 23.61 28.83 39.77 42.34

Top 10 cargo types (L) 10.64 12.37 17.93 29.53
All cargo types (L) 11.57 12.74 19.99 30.81

times, variability for a specific cargo type also varies. This
is partially due to the variability of the amount of the cargo.
We also report the same results, with per tonnage normalized
values, presented in Figure 3b. We can see that there are
certain cargo types, that have standardized procedures, with
less variance (e.g. containers, liquid cargoes, gas) and some,
especially bulk cargo types, which per tonnage processing
time shows greater variability. Such findings indicate, that
predictive performance will differ along different cargo types.

The day of the arrival to the port also has a significant
impact on the turnaround time, as presented in Figure 4.
Turnaround time increases on Friday and Saturday, due to
limited port operational capacity. Some port operators are also
not operating during the weekend, due to increased labour
cost. Some ship operators also do not want to pay higher fees
during the weekend. There are also contractual obligations for
certain ship operators and cargoes, which have priority, due to
emergency, or just-in-time deliveries for the factories. Holidays
and consequently reduced manpower, or the event of a closed
port, also increases turnaround times.

B. Predictive Modelling

We first evaluate predictive performance on large-scale
historical data with a cross-validation procedure and evaluation
metrics as described in section IV-D. We report the results in
Tables Ia and Ib for the most frequent unloading and loading
cargo types, respectively. We also compare our results with
the linear regression model, to demonstrate superiority of the
used CatBoost method [17], over baseline machine learning
models. Note that careful feature normalization and categorical
feature transformation was performed for linear regression,
as described in section IV-B. We can see that overall MAE
is around 15 hours for unloading and 11 hours for loading
operations, or expressed with MAPE - around 30% error. The
comparison is made against ground truth turnaround time,
computed out of exact arrival and departure times. The error
on predicted turnaround time reduces greatly for certain cargo
types (e.g. liquid cargo, containers), even below 10% and it is
evident, that the error correlates with specific cargo types and
findings presented in EDA section V-A. Overall error is similar

TABLE II: Evaluation on live operational data for cargo types
with at least 3 arrivals in a evaluation period of 2 months.
Results are reported for unloading and loading operation, as
well as overall results for separate operations.

Cargo type CatBoost MAE [h] Port MAE [h]

U
nl

oa
di

ng

ENGR.LIQUIDES 2.03 18.66
METHANOL 2.34 9.49
RAPESEED OIL 2.58 32.16
BUTADIENE 3.39 16.73
SOYA OIL 6.84 24.74
TALL OIL 7.32 25.49
BULK UREA 16.93 57.29
NORTH SAWS 25.37 55.48
SUNFLOWER BULK 89.77 188.93

Combined 16.52 45.81

L
oa

di
ng

MAIS VRAC 8.35 19.41
CRUSHED TYRES 10.75 9.75
BULK WHEAT 10.78 17.72
SUNFLOWER OIL 12.68 14.00
SCRAP 13.56 56.88

Combined 9.97 22.75

for both, unloading and loading operations and CatBoost [17]
significantly outperforms baseline linear regression method.

We additionally evaluate the deployed system on 2 months
worth of live operational data. The data consisted of 93 port
calls, with at least 3 arrivals for each cargo type, in order
to have reliable statistics, comparable with historical data.
We have used best performing CatBoost model from offline
evaluation on historical data. Results, presented in Table II
show, that the performance (MAE) is consistent with the
performance on offline data and consistently better from the
current simplistic model used by the port, by a large margin.

C. Ablation Study

The predictive models, presented in Tables I and II were
only using basic FAL forms vessel and cargo specific data
(i.e. unloading and loading cargo types, amount of cargo,
arrival temporal information and berthing information) and
holiday information. The used features and their importance6

are presented in the Table III. We also experimented with other

6https://catboost.ai/docs/concepts/fstr.html



TABLE III: Features used in the best performing model and
their importance. Feature importance values are normalized so
that the sum of importances of all features is equal to 100.

Feature Importance

cargo type (U) 17.40
cargo tonnage (U) 16.15
day of entry 12.71
berth (U) 11.13
cargo type (L) 8.54
hour of entry (round 4) 8.21
berth (L) 8.03
fiscal cargo type (L) 6.70
fiscal cargo type (U) 5.56
cargo tonnage (L) 4.72
holiday on entry 0.31
holiday in 2 days 0.20
holiday 1 day ago 0.18
holiday in 1 day 0.16

features, that naturally should have the influence on turnaround
time, but it did not improve the predictive performance of
our model. Tidal levels, as presented in Figure 2 have the
influence on arrivals, but encoding water height and the time
since the last high and low water, did not improve the results of
our model. Similarly, the congestion in the port should have
an influence on the turnaround time. We experimented with
multiple features, that encoded congestion (e.g. number of the
vessels in the port, number of vessels with the same (U/L)
cargo, average turnaround time for the last N ships that visited
the port in the last M days), but did not see the improvement in
the predictive performance. Note that these conclusions relate
to GPMB data, which is a relatively small port. We argue that
such features should be useful in general.

We also experimented with weather data, especially wind
and precipitation data, that should have influence on the
turnaround time. We obtained hourly aggregated weather data
and combined it with historical port call data. We did notice
that the level of precipitation has the influence, as presented in
Figure 5. Certain dry bulk cargo types experience noticeably
longer turnaround times, in comparison with containers or
liquid cargoes. Nevertheless, when we presented such features
to the predictive model, it did not result in an increased
accuracy. This might again be specific to the Port of Bordeaux.

VI. CONCLUSION

In this paper we present a novel machine learning based
system for turnaround time prediction, based on standardized
port call data, captured in the ports. We evaluate the proposed
system on the real-world example of the Port of Bordeaux,
consisting out of 11 years worth of historical data, as well as
live operational data. Our results show that port call data can
be successfully used to predict turnaround time, with predic-
tions for certain cargo types reaching error rates below 10%,
compared to ground truth data. We also show that our proposed
data driven approach significantly outperforms currently used
manual approach in the port. We also demonstrate, that port
call data offers an insight into port operations, by exploring
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Fig. 5: Influence of different levels of precipitation on
turnaround time of different loaded and unloaded cargo types.

the collected data to obtain various business metrics, some of
them presented in our exploratory data analysis.
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