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Abstract—In this paper we present a ship detection pipeline
for low-cost medium resolution satellite optical imagery obtained
from ESA Sentinel-2 and Planet Labs Dove constellations. This
optical satellite imagery is readily available for any place on Earth
and underutilized in maritime domain, compared to existing
solutions based on synthetic-aperture radar (SAR) imagery. We
developed ship detection method based on state-of-the-art deep-
learning based object detection method which was developed
and evaluated on a large scale dataset that was collected and
automatically annotated with the help of Automatic Identification
System (AIS) data.

Index Terms—ship detection, ESA Sentinel, Planet Dove, deep-
learning, AIS

I. INTRODUCTION

Earth observations from space present a new dimension
of information that offers an unprecedented global view for
various domains and industries. Maritime industry is at the
forefront of the utilisation of remote sensing data for ice,
ship and oil pollution monitoring, with operational services
available such as CleanSeaNet [1] in Europe and NASTOP [2]
in USA and Canada. Ship detection presents a crucial step
in any maritime surveillance application in order to analyze
traffic activity and also presents the main topic of this paper.

Synthetic-aperture radar (SAR) satellites represent the pre-
dominant source of remote sensing imagery for maritime
surveillance, due to its resistance to weather conditions (e.g.
clouds) and day & night operational capabilities. SAR imagery
has its limitations, especially near the coastline and in harbour
areas due to presence of multiple objects on shore as well
as on the sea, causing strong SAR backscatter centers and
consequently the failure of traditional SAR ship detection
methods [3]. Optical imagery presents a viable alternative for
ship detection, increasing not only detection capabilities in
complex environments, but also providing additional contex-
tual information about the ship and its surroundings.

Ship detection from optical imagery has become an active
research area in recent years, especially with the advent of
deep-learning based methods, which have greatly increased
the performance and also led to first operational systems [4].
Majority of research, as well as developed operational sys-
tems utilizing ship detection based on optical imagery, are
focused on very-high-resolution (VHR) imagery, with spatial
resolution up to 30cm. VHR satellites are available only in

tasking modes which makes them expensive to collect imagery
for specific areas of interest and longer periods of time,
consequently limiting the use to governmental institutions for
monitoring targeted limited areas in a specific time.

In this paper we present a ship detection pipeline for low-
cost medium resolution satellite optical imagery, obtained from
ESA Sentinel-2 (10m resolution) and Planet Labs Dove (3m
resolution) constellations, that is readily available for any place
on Earth and underutilized in the maritime domain. This satel-
lite imagery is available free-of-charge in case of Sentinel-2
imagery or presents the cheapest commercial solution available
on the market, with unique daily availability of new imagery
for every point on Earth in the case of Planet Dove. To the
best of our knowledge, this represents the first application of
state-of-the-art deep-learning based methods for ship detection
on this kind of satellite imagery in the research literature.

We adapt the state-of-the-art two-stage Mask R-CNN frame-
work [5] to the domain of ship detection. Large scale datasets
are needed to train the methods and there is no datasets
available for medium resolution satellite imagery, as well
as for our specific satellite constellations used. We utilize
recently presented Kaggle Airbus ship detection dataset [6].
We show that these annotated datasets for ship detection on
VHR satellite imagery can also be used for ship detection
on a medium resolution imagery. To evaluate our proposed
methods, we collect satellite imagery for the areas around Port
of Oakland (San Francisco Bay) and Port of Long Beach for
the years 2016 and 2017. In order to automatically annotate the
data, we developed a procedure that combines openly available
Automatic Identification System (AIS) data with obtained
satellite imagery and cloud masks. With this approach we get
the exact positional matching of AIS GPS data and satellite
imagery, needed to evaluate ship detection performance. We
also use AIS data in a novel way, such that we utilize AIS
data to prepare weakly annotated ship detection dataset out of
positional information and information about the ship length.
With such a novel combination of existing VHR datasets and
weakly annotated additional data, which can be obtained easily
in large quantities, we report state-of-the-art detection results,
as well as detection performance across different lengths. Our
main contributions can be summarized as follows:

• We present a novel deep-learning-based state-of-the-art



approach for ship detection from low-cost medium reso-
lution satellite optical imagery with applications and eval-
uation on the off-the-shelf operational satellite imagery
from ESA Sentinel-2 and Planet Dove constellations.

• We show that existing VHR annotated satellite imagery
for ship detection can also be utilized on medium resolu-
tion imagery. Combined together with a generalized and
automatic approach of building weakly annotated dataset
from AIS data, makes this method applicable across
different satellites with different sensor characteristics.

• We collect large scale satellite imagery from ESA
Sentinel-2 and Planet Dove constellations and automati-
cally combine it with AIS data to perform training and
evaluation of the proposed methods on operational data
as well as to enable additional future applications.

II. RELATED WORK

SAR imagery is predominately used in maritime domain
for ship detection. The most popular approaches are based
on constant false alarm rate (CFAR) methods [7], [8]. With
CFAR based methods, all pixels brighter than local threshold
are regarded as pixels belonging to the ship. The threshold
is computed, based on the local statistics and an assumed
probability density function (PDF) for the clutter, as a pixel
value above which a clutter pixel has a fixed probability of
occurring [8]. Majority of the research work is focused on
ship detection in open waters, omitting the need for reliable
ship detection in port and harbour areas. In such areas, there
is a presence of multiple objects on shore as well as on the
sea, which are causing strong SAR backscatter centers, which
can cause a lot of false alarms with CFAR based methods [3].
Recently, there has been a spike in research towards making
SAR based methods more reliable in such environments [3],
[9], [10], majority of them still based on CFAR methods, but
with a harbour specific sea-clutter models. We focus instead on
optical satellite imagery, especially medium resolution, which
is particularly underutilized in maritime domain [11] and can
provide additional contextual information about the ship and
its surroundings.

Ship detection can be in general terms of computer vision
terminology viewed as an object detection problem. Computer
vision domain has recently seen a tremendous improvements
in performance in all sorts of different computer vision tasks,
including object detection. This is mostly due to prevalence
of deep-learning based methods, that have replaced traditional
handcrafted features and learning based classifiers with an
end-to-end data-driven framework. This provides performance
gains and improved flexibility, by allowing the same methods
to be successfully used in different tasks, given the availability
of sufficient amount of labeled data. This is particularly the
case of transfer learning, which is particularly important for
the domains, where the data is scarce. Methods are pre-
trained on large scale datasets for a common problem of image
classification [12] or object detection [13] and then fine-tuned
on smaller scale domain specific datasets.

Recently, there has been a spike in research towards using
state-of-the-art deep-learning based object detection methods
for ship detection on optical [14]–[16], as well as SAR
imagery [17]–[19]. Majority of them are using incarnations of
Faster R-CNN [20] or YOLO [21] deep-learning based object
detection methods. In this paper we also used an incarnation
of Faster R-CNN framework with Feature Pyramid Network
(FPN) [22] as a feature extractor. There is a lack of research
for ship detection out of optical satellite imagery, especially
when comparing with research in SAR domain. Majority of
research for ship detection out of optical satellite imagery is
also based on VHR optical imagery. We focus instead on lower
resolution optical imagery from ESA Sentinel-2 and Planet
Dove constellations.

The success of deep-learning based methods is extremely
dependant on large amounts of labeled data, which is not
always available, extremely difficult or expensive to obtain,
or available with limited labeling accuracy. Ship detection
datasets for optical satellite imagery are mainly captured from
VHR imagery. In this paper we used Airbus Kaggle dataset [6],
which was provided in a 2018 organized Kaggle challenge,
to detect ships out of the satellite imagery. This presents the
biggest dataset of annotated ship locations (i.e. masks for
rotated bounding boxes are provided). The dataset contains
150.000 JPEG images of 768x768 dimensions extracted from
SPOT satellite which has 1.5m resolution. Most of the images
do not contain ships, but negative examples. There are 81723
annotated ships; most of them are small ships, but there is
also quite a bit of cargo ships present that can be filtered out.
We have used scaling augmentations during the training pro-
cess [23], to perform domain adaptation for lower resolution
satellite imagery, used in this paper. Besides using existing
VHR ship detection datasets, we also utilized AIS data in a
novel way, to automatically construct weakly annotated large
scale ship detection dataset, with the help of positional and
ship length information. Besides using AIS data for evaluation
purposes [24], this presents a novel way of using AIS data
and eliminates the need of human level annotations and also
presents a step in the direction of going beyond traditional
supervised learning [25], [26].

III. PIXSAT DATASET

PIXSAT dataset1 a is large scale dataset for ESA Sentinel-
2 and Planet Dove satellite constellations of optical imagery.
Compared to existing datasets which are based mostly on
VHR optical satellite imagery, this presents the first attempt
to build a large scale dataset on medium resolution optical
imagery. Existing large scale datasets such as HRSC2016 [16]
are developed from Google Earth imagery, which does not
represent real-life conditions due to selection of best possible
imagery. Such satellite imagery, without any clouds and other
image distortions due to sensors and different atmospheric
conditions, is not realistically processed in an operational
environment. Other large-scale datasets, such as Kaggle Airbus

1PIXSAT will be made available at: https://pixsat.xlab.si



(a) San Francisco Bay area (b) Port of Long Beach area

Fig. 1: Regions of interest (ROI) used for fetching satellite imagery.

ship detection dataset [6], are mostly captured on open sea,
which greatly simplifies ship detection and does not represent
significant gains over SAR imagery in terms of ship detection
performance. PIXSAT dataset is compared to existing datasets,
constructed from operational satellite imagery, capturing re-
gions of Port of Oakland (San Francisco Bay) and Port of
Long Beach for the years 2016 and 2017. We also developed
a procedure to automatically combine AIS data from the ships
with satellite imagery in order to automatically annotate ship
positions in satellite imagery and to enrich them with metadata
that is available in AIS messages.

In the next subsections we briefly describe different data
sources utilized in the construction of the PIXSAT dataset and
the methodology used to construct PIXSAT dataset.

A. ESA Sentinel

ESA Sentinels are a constellation of satellites with different
sensors installed, which primary role is to ensure availability of
Earth observation data for environmental and security services.
The program is managed by the European Commission and
implemented by European Space Agency (ESA), member
states and other European agencies that rely on space data. The
data from ESA is publicly available, including for commercial
use. There are five Sentinel missions, each mission is a
constellation of two or more satellites in the same orbital
plane, to have satisfying revisit time and coverage. The most
important missions for maritime monitoring are Sentinel-1
and Sentinel-2 missions. Sentinel-1 mission (SAR) is already
utilized by CleanSeaNet [1]. We utilize Sentinel-2 imagery,
which provides optical imagery, that is underutilized in mar-
itime domain [11].

Sentinel-2 mission offers a global coverage of all the land
territory, as well as some of the maritime regions. All the
coastlines are covered globally (20 km from the shore), as

well as all inland water bodies, all closed seas and the whole
Mediterranean Sea and is as such well suited to monitor coastal
and harbour regions. Sentinel-2 mission revisit frequency at
the equator is 5 days, with two satellites. Besides revisit times,
spatial resolution is also important. Sentinel-2 imagery offers
optical imagery with 10m resolution, which means that the
minimum size of the object to be recognized is 10m.

Sentinel imagery can be accessed through ESA portals2,
directly or via API access. More intuitive access is available
through 3rd party providers such as Sinergise Sentinel Hub3,
that is also integrated into open-source Earth observation
library eo-learn4. This library was used to retrieve imagery
in this paper, along with additional capabilities such as cloud
detection.

B. Planet Dove

Planet Labs is a commercial provider of satellite imagery
and they emerged from smallsat revolution, as the biggest
operator of optical satellites in space. They operate the so
called cubesats, which are using commercial-off-the-shelf
components in a much smaller form factor. Their cost is a
fraction of the money required by traditional satellites and
can thus be sent in the space in much larger constellations,
offering much better revisit times. We have used Planet Dove
constellation of 120+ satellites that are able to image entire
Earth’s landmass every day at 3m resolution.

Compared to ESA Sentinel-2, Planet Labs offers better
spatial resolution and revisit times. They also offered (until
recently) open access to California area, which was utilized in
this paper. Increased capabilities offered by Planet constella-
tion can complement the methods developed on ESA Sentinel

2https://scihub.copernicus.eu
3https://www.sentinel-hub.com/
4https://eo-learn.readthedocs.io



imagery, as maritime area can be monitored with increased fre-
quency and resolution which opens possibilities for additional
use-cases. Planet Labs pricing is not publicly available, but
studies have been done in agriculture, making it the most cost-
effective solution among commercial providers [27]. Daily
revisit times and increased resolution are unique features, not
available by public (free-of-charge) providers.

Satellite imagery was retrieved from a freely available
California area, licensed under CC-BY-SA 4.0, with available
API. Planet also provides Usable Data Masks (UDM) which
can be used for cloud masking. Recently new UDM-25 was
introduced which greatly improves the performance, but is
only available on satellite imagery from August 2018 onwards.
We were limited to historical satellite imagery from 2016 and
2017, due to availability of AIS data.

C. Marine Cadastre AIS

Automatic Identification System (AIS) was proposed and
mandated by International Maritime Organization (IMO) and
it’s main intention is to prevent collisions on sea. It provides
additional information, however, it does not replace existing
solutions on board, such as radar and other means that are
regulated by Convention on the International Regulations for
Preventing Collisions at Sea (COLREG). Since December
31st, 2004 all vessels exceeding 300GT are obligated to have
an AIS transceiver installed and operational. Navigational data,
information about the ship and voyage related data, is transmit-
ted via VHF radio between ships and shore stations. The range
is limited to the VHF range, which is about 10-20 nautical
miles but S-AIS (Satellite-based AIS) is available, which can
track ships on open sea. Besides collision avoidance, AIS
data is used for many other applications in maritime domain,
such as fishing fleet monitoring, maritime security, search and
rescue, accident investigation, fleet and cargo tracking and
many others. We utilize AIS data in a novel way, not only for
evaluating ship detection performance, but also to build large-
scale weakly annotated dataset for ship detection, eliminating
the need for human level annotations.

Kinematic information (ship location, speed, course, head-
ing, etc.) and some static information (MMSI, ship type, ship
size, etc.) are provided every couple of seconds when ship
is underway and every couple of minutes when the ship is
anchored or moored. This data is available in almost real-
time, while historical data is also available. Marine Cadastre
provides historical AIS data for USA coastal and inland
waters6. We used the data from San Francisco Bay and Port
of Long Beach areas. AIS data is updated once per year and
currently the AIS data is available from 2009 to 2017.

D. Properties of PIXSAT

PIXSAT dataset is composed out of ESA Sentinel-2 and
Planet Dove satellite imagery. Satellite imagery was obtained
for areas of Port of Long Beach and San Francisco Bay, for
the years 2016 and 2017. Regions of interest (ROIs) that were

5https://www.planet.com/pulse/planets-new-usable-data-masks/
6https://marinecadastre.gov/ais/

used for fetching the imagery are presented in images 1b
and 1a, for Port of Long Beach and San Francisco Bay
respectively. Number of satellite images, that were obtained for
each region and each year are presented in table I. Altogether
2420 satellite images were obtained from Planet Dove and
148 from ESA Sentinel satellite constellations. The large
difference in quantity is due to better revisit frequency of
Planet Dove and due to Planet API ROI fetching strategy,
which does not combine satellite imagery together but rather
fetches all the raw imagery that intersect ROI area. There is
also greater number of imagery for year the 2017, which is
due to continuously larger Planet Dove constellations, which
achieved daily landmass coverage at the end of the year
2017. Similarly, additional satellite was provided for Sentinel-
2 constellation in the beginning of the 2017. Besides imagery,
cloud masks (UDM) were also fetched from Planet API. We
have used eo-learn library to obtain cloud masks for Sentinel-
2 imagery. We have found out that the provided cloud masks
from Planet are not of sufficient quality to rely on it. New
version of UDM API, available for satellite imagery from
August 2018 onwards, should provide better results.

TABLE I: PIXSAT statistics - number of images

SF LB
2016 2017 2016 2017

Planet 192/78 1000 212/117 1016
Sentinel 31/24 41 27/22 49

Satellite imagery was combined with AIS data in order to
automatically annotate satellite imagery with ship positions
and additional information, such us ship length and naviga-
tional status. The number of ships (as reported by AIS), that
were correlated with satellite imagery for each region and year
is presented in table II. Altogether 34894 ships were matched
with Planet imagery and 5251 with Sentinel imagery. Only
the ships of length greater than 30m were used for matching,
due to our interest in commercial ships and spatial resolution
limitations of used satellite imagery. We only matched ships
whose reported navigational status in AIS messages is not
”underway using engine”, to have a direct positional matching,
without the need of interpolation. We have used 5 minutes
window for AIS positional report averaging of such stationary
ships in order to ensure better positional accuracy. Matched
ships might be covered with clouds or distorted due to different
atmospheric conditions or image distortions. The data from
2016 was used for evaluation and 2017 for training purposes.
In order to have valid ground truth annotations, we manually
inspected all the satellite imagery from 2016 and its AIS
matches. The second number for the year 2016 in tables I
and II provides the number of images containing at least one
valid AIS matching and the number of valid ships, respectively.
We retained AIS matches that were not covered by clouds
and can be clearly recognized by a human. An example of
satellite imagery and AIS matches is presented in figure 2,
where rectangles are visualized around reported AIS positions
with edge length corresponding to twice the reported AIS ship



Fig. 2: Satellite imagery of Port of Long Beach and matched AIS data. Cloud mask (UDM) is also visualized in black and
rectangles covered in clouds by more than 20% are visualized in red. Best viewed in digital version with zoom.

* Contains modified Open California Satellite Imagery ©2019 Planet Labs Inc. licensed under CC BY-SA 4.0.

length. Rectangles that are covered in clouds for more than
20% are visualized in red. Cloud detection from UDM masks
did not prove reliable and because of that, resulting patches
for the year 2016 were manually inspected. With better cloud
detection methods, or with new, more reliable UDM masks,
one can generate such dataset in a complete automatic way.
In figure 3 we present distribution of ship lengths as captured
in the 2016 part of the dataset, that was used for evaluation.

TABLE II: PIXSAT statistics - number of ships

SF LB
2016 2017 2016 2017

Planet 2085/446 10481 4076/1267 18252
Sentinel 669/199 957 1229/504 2396

An additional dataset was prepared out of the original
PIXSAT dataset, that was used for training the ship detection
method. Besides using AIS data for evaluating ship detection
performance, we used ship length information to provide
weakly annotated data for training ship detection method. We
made patches out of the original satellite imagery of sizes
800x800 pixels, with 200 pixels of overlap and merged it
with AIS data. Rectangles with the reported ship length were
centered around the reported ship positions. We manually
inspected all the 800x800 patches with annotations, to discard
patches covered with clouds or patches where some of the AIS
matches were false. The number of patches and the number
of annotated ships for each data provider, location and year
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Fig. 3: Histogram of reported AIS ship lengths for the ships
captured in the 2016 part of the PIXSAT dataset, that was used
for evaluation purposes.

are reported in table III. Annotations on a full Planet Dove
satellite (before patching) are presented in figure 2. Only the
data from 2017 was used for training purposes, as 2016 data
was used for evaluation, as reported in tables I and II.

IV. EXPERIMENTS

In this section we present the experimental setup and
methodology, as well as the results of our automated system
for ship detection. We report detection performance across



TABLE III: PIXSAT statistics - number of patches and ships

SF LB
2016 2017 2016 2017

Planet 137/231 740/1417 601/1282 1773/5350
Sentinel 33/188 39/278 40/708 102/1629

different ship lengths, different locations and satellite constel-
lations.

A. Training data

For training we utilized the large scale Kaggle Airbus
dataset [6], which presents the largest ship detection dataset
in the research community. The dataset was modified such
that bounding boxes were fitted on provided rotated masks,
to translate initial segmentation problem to that of object
detection. We also filtered out only annotations where provided
lengths of initial rotated masks exceeded the length of 50m.
This is due to a large amount of smaller ships present in the
dataset, which would present noise in lower resolution satellite
imagery, used in this paper. After filtering, we were left out
with 26496 images with altogether 42803 ship annotations.
Additionally we added the same amount of images without any
annotations. Inspired by [23], we also experimented with scale
augmentations. For each image with annotations, we added
additional one, scale augmented in the range of 50% to 70%
of its original size. We also used rotation augmentation in the
range of -45°to 45°and Gaussian blur in the range of 0 to 0.5.

We also used a novel weakly annotated PIXSAT dataset,
which was presented in this paper. We use PIXSAT in an in-
dependent way and in a fine-tuning procedure in a combination
with Kaggle Airbus dataset. No augmentation procedure was
used with PIXSAT dataset.

B. Methods

We used the state-of-the-art two-stage Mask R-CNN frame-
work [5]. More precisely, we used modified Faster R-
CNN [20] implementation with Feature Pyramid Network [22]
and ResNet-50 [28] as a backbone architecture. We used the
code from Facebook [29], which provides fast and modular
implementation in PyTorch. We trained the method on Kaggle
Airbus dataset for 100 epochs with initial learning rate of
0.02, which was reduced by a factor of 10 at 1⁄3 and 2⁄3 of
epochs. When training on Kaggle Airbus dataset, network was
initialized from ImageNet [12]. We also performed training
on PIXSAT dataset, initialized from ImageNet, as well from
a model trained on Kaggle Airbus. When fine-tuning PIXSAT
from Kaggle Airbus, we reduced the initial learning rate by
a factor of 10. Confidence of 20% was used for detection
threshold.

Satellite images are divided in 800x800 patches with 200
pixels of overlap, due to resource constraints. Same parameters
were also used to build PIXSAT ship detection part of the
dataset. Kaggle Airbus dataset also has a similar resolution of
768x768 pixels. We used Non-Maximum Suppression proce-
dure (NMS), to eliminate multiple overlapping detections.

C. Experimental results

We evaluated our method on a 2016 part of the PIXSAT
dataset. We report ship detection (retrieval) rate, which is
considered successful if ground truth position from AIS data
is inside the reported detection from our method. We report
detection rates across different satellite constellations, different
locations and different ship lengths. We conduct multiple
experiments in order to test different augmentation and training
strategies.

In the first experiment (i.e. baseline), we train ship detection
method only on Kaggle Airbus data, without any augmen-
tations, as presented in training data section. In the second
experiment (i.e. baseline with augmentations), we added scale
and rotation augmentations to the training data. In the third ex-
periment (i.e. PIXSAT) we trained our ship detection method
only on PIXSAT ship detection training data and in the last
experiment (i.e. baseline + PIXSAT), we initialized the method
with model trained on Kaggle Airbus and fine-tuned it on
PIXSAT dataset.

Overall results across all ship lengths are reported in ta-
ble IV. With our baseline, trained only on Kaggle Airbus
data, we successfully detected approximately 50% of the ships.
Overall the results on Planet data are slightly better due to
smaller difference in spatial resolution between training and
testing data (1.5m vs. 3m). Interestingly, scale augmentations
in our second experiment didn’t improve the results as much as
expected, according to [23]. Results only slightly improved on
ESA Sentinel-2 data, which was expected due to much lower
spatial resolution. Majority of ship annotations in Kaggle
Airbus are on open sea, which is contrary to PIXSAT dataset.
Results greatly improve when we train the method on PIXSAT
dataset. This is not only due to same spatial resolution and
sensor characteristics, but also due to introduction of training
data with ships in port area. Fine-tuning our method on
PIXSAT data, when initialized on Kaggle Airbus did slighty
improve the results on Planet data, which was expected, due
to more similar spatial resolution.

TABLE IV: Overall ship detection performance across all ship
lengths

SF LB
Planet Sentinel Planet Sentinel

baseline 52% 54% 54% 41%
baseline (aug.) 50% 56% 52% 45%

PIXSAT 57% 86% 72% 92%
baseline + PIXSAT 61% 87% 76% 84%

We also report ship detection rate across different ship
lengths, for all mentioned experiments, locations and satellite
constellations. Results reported in figures 4, 5, 6 and 7 need
to be correlated with the number of ships, of particular length,
captured in the test part of the PIXSAT dataset and presented
in figure 3.

We can clearly see that ship detection performance on
smaller ships is much worse, compared to bigger ships. In our
training data, we focused on ships larger than 50 meters, to
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Fig. 4: Baseline - Kaggle Airbus
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Fig. 5: Baseline - Kaggle Airbus (with augmentations)
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Fig. 6: PIXSAT only
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Fig. 7: PIXSAT fine-tuned on Kaggle Airbus (no aug.)

avoid noise and due to our interest in commercial ships only,
due to availability of AIS data. Majority of ships captured in
PIXSAT test set are in the range between 100 and 350 meters.
We can see that the introduction of scale augmentations,
presented in figure 5, improved detection rates of smaller
ships in the range between 100 and 200 meters. Detection rate
did not improve much with larger ships. We can see overall
improvement across all ship lengths after the introduction of
the PIXSAT dataset in the training procedure. We can also see
that the detection rate slightly increases, with the ship lengths.
This was not directly noticeable when trained only on Kaggle
Airbus dataset. This is due to presence of such ships in port
areas, mostly moored and as such not detected when trained
only with Kaggle Airbus data. We can also see that the ship
detection performance is in general better with ESA Sentinel-
2 satellite, which needs to be considered with caution, as the
results cannot be directly compared. The satellite imagery of
different satellite constellations is not captured at the same
times, as well as we manually filtered test part of the PIXSAT
dataset. We filtered out false AIS matches, as well as matches,
where ship cannot be clearly recognized by a human annotator.
In the case of Planet Dove imagery, with increased spatial

resolution of 3m, the resulting dataset is more challenging
compared to ESA Sentinel-2. There is also much more ships
captured with Planet Dove, as presented in figure 3.

We also present qualitative results on operational satellite
imagery, used in the experiments. Figures 8b and 8a present
results of the best performing model on Planet Dove satellite
imagery. Similar results for ESA Sentinel-2 are presented in
figures 10a and 10b. We can see that detections are robust,
in the port area, as well as in the area that is covered with
clouds. One can notice, that the detections do not capture the
whole area of the ship. This is due to our training data from
PIXSAT, where we fitted rectangles of ships lengths to the
reported AIS positions, which are usually captured in the ship
bridge area. The selection of rectangles size and the influence
of background on the detection performance is still to be
investigated for future work. Figure 9 presents results of the
baseline model, which captures ship dimensions much more
accurately, but it fails in the port area, due to lack of training
imagery in such environment. We have also investigated the
use of heading information in AIS data in order to make
annotations much more accurate, but we didn’t find it reliable
enough, especially for stationary ships.



(a) San Francisco Bay area

(b) Port of Long Beach area

Fig. 8: Results of best performing model (baseline + PIXSAT) on Planet Dove satellite imagery*. Best viewed in digital version
with zoom.

* Contains modified Open California Satellite Imagery ©2019 Planet Labs Inc. licensed under CC BY-SA 4.0.



Fig. 9: Results of baseline model on Planet Dove satellite imagery of Port of Long Beach*. Best viewed in digital version with
zoom.

* Contains modified Open California Satellite Imagery ©2019 Planet Labs Inc. licensed under CC BY-SA 4.0.

(a) Port of Long Beach area (b) San Francisco Bay area

Fig. 10: Results of best performing model (baseline + PIXSAT) on ESA Sentinel-2 imagery*. Best viewed in digital version
with zoom.

* Contains modified Copernicus Sentinel data from Sentinel Hub licensed under CC BY-NC 4.0.



V. CONCLUSION

In this paper we presented a novel use of AIS and satel-
lite imagery data in order to perform ship detection across
operational satellite imagery of medium spatial resolution.
We presented a large scale ship detection dataset - PIXSAT,
which presents a novel approach of using weakly annotated
data, which is available in abundance, for developing ship
detection methods, without the need of human labeled data.
We showed that solely by using weakly annotated data we
improve the results compared to using existing, human labeled
datasets. We applied the methodology to the largely unused (in
maritime domain) medium resolution optical satellite imagery
from ESA Sentinel-2 and Planet Dove satellite constellations.
The presented methodology is general and applicable also for
other satellite constellations and also opens up opportunities
for new use cases in the maritime domain.
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