

loT for environmental leverage in European ports

Aristos Halatsis

Baltic Ports Conference 2019

Stockholm, September 6, 2019

The context

Gross weight of goods transported in European Ports in 2017 (thousand tonnes - Source: Eurostat) The challenges faced by (especially) the long-tail ports:

- Efficient data capture to continuously drive decision making is still a challenge
- Heterogeneous operational **data integration** still leaves much to be desired
- **Expected environmental impact** of operational decisions remains unclear to a large extent
- Commonly agreed standardised practices for assessing, integrating and reporting the environmental impact of port operations are missing
- **Digitalisation** moving at a slow pace in most long-tail ports

PIXEL — Where IoT meets the Port of the Future

- **<u>PIXEL</u>**: Port IoT for Environmental Leverage ٠
- Topic: MG-7-3 The Port of the future
- Duration: May 2018 April 2021 (36 months) •
- 15 <u>partners</u> from 7 countries (ES, SI, IT, FR, HR, EL, UK) •

Vision

A Port of the Future in which **small and medium ports** are also innovators in terms of environmental sustainability

Mission

To bring the **Sustainable** Port of the Future paradigm to the complete spectrum of ports

What we do - The PIXEL innovation backbone

Integrate operational data from IoT devices & systems, to continuously feed monitoring, simulation & prediction

IoT integrated platform

focused on automatic collection & processing of heterogeneous live data streams Simulate, predict & optimise, port operations to reduce environmental impact, using a scaling approach based on data availability

Information hub and

optimisation operations through

smart models & operational

tools (energy, transportation,

pollution and port-city

integration)

Standardise & integrate port environmental impacts into a global metric

Port Environmental Index (PEI) as a quantitative composite indicator of the overall environmental performance of a port

Monitor and inform port personnel & stakeholders on environmental and operational aspects

Dashboard & notification component, for decision support & information provision through the appropriate channel (e.g. API, email alert, etc.)

PIXEL services for port environmental leverage

An IoT-facilitated Port Environmental Index

A global indicator (Port Environmental Index) of the environmental impact of ports, that is:

- **extends previous initiatives** aimed at the assessment and steering of port environmental performance
- designed to be **impact-oriented**
- integrating all environmental impacts in **one composite indicator** while allowing impact-level **drilling-down**
- implemented taking advantage of the opportunities of real-time measurement through the use of IoT devices
- incorporated in the **PIXEL platform** services

PINEL

RESEARCH & TECHNOLOGY

The PIXEL predictive models

Energy demand/supply model

			Assignment		<u>1</u>	S Assignment					
Ship planning					Supply Chain		Handling equipment specifications				
Start	Туре	Tonnage]	Dock	Sequence		Energy	Cons.	Debit	Status	
16/05/18 12:15	Cereal	6502		452	{Crane1 > Conv.Belt3 >>}		Electric	4.5 (kW)	52 (cont./h)	Ok	
25/05/18 23:06	Sol.Bulk	15284		421	{Pump4 >}		Fuel B405	15 (L)	32 (T/h)	Ok	
29/05/18 16:32	Sol.Bulk	751		421	{Pump2 >}		Fuel H56	28 (L)	125 (m ³ /h)	HS [dates]	
02/06/18 05:57	Liq.Bulk	6548		310	{Hopper >> Schuller >}		Electric	31 (kW)	32 (T/h)	Ok	

- Predicts energy consumption based on a mixed use of handling equipment specifications (based on port activity), realtime consumption sensors and temporal conditions (e.g. berths' lighting & building heating requirements during winter months)
- Forecasts solar energy production based on irradiance data and weather conditions (sensor measurement or satellite-based tools)
- Balances energy consumption and production

Port-city and multi-modal traffic model

- Predicts potential bottlenecks at the port gates
- Incorporates port activity planning
- Includes current traffic data in the city to detect upcoming congestion at gates
- Embeds sensors/information of gates' status
- Incorporates weather conditions that can impact sea-based traffic

Emissions quantification & pollutants dispersion

			(X) Acsignment		<u>រ</u> រ្	⊗ Assignment	*				
Ship planning					Supply Chain		Emission Unit				
Start	Type	Tonnage	ו ר	Dock	Sequence		Noise (dB)	CO ₂ (ph)	PM.o		
16/05/18 12:15	Cereal	6503		452	(Crane1 > Conv.Belt3 >>)		75	235	75		
25/05/18 23:06	Sol.Bulk	15284		421	(Pump4 >)		81	203	81		
29/05/18 16:32	Sol.Bulk	75		421	(Pump2 >)		78	178	78		
2/06/18 05:57	Liq.Bulk	654	5	310	(Mopper >> Schuller >)		87	368	87		
-	144	-									

- Predicts port emissions
- Emissions inventory
- Pollutants in air, water & soil
- Forecasts pollution end-points in time & space

The PIXEL use-cases ... and an open invitation

Thank You + Questions?

This Communication is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°769355

Baltic Ports Conference Stockholm September 4-6, 2019 Aristos Halatsis halatsis@certh.gr Senior Project Manager CERTH/HIT