

D6.5 – APIs and documentation for

software extension

Deliverable No. D6.5 Due Date 30/06/2020

Type Other Dissemination Level Public

Version 1.0 Status Final

Description Technical specification of developed methods and services. Both API and other

software-related documentation will be in a standardised format permitting

particular deployments to access the software adequately.

Work Package WP6

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 2 de 77

Authors
Name Partner e-mail

Benjamín Molina P01 – UPV benmomo@upvnet.upv.es

Ignacio Lacalle P01 – UPV iglaub@upv.es

Carlos E. Palau P01 – UPV cpalau@dcom.upv.es

José A. Clemente P02 – PRO jclemente@prodevelop.es

Ismael Torres P02 – PRO itorres@prodevelop.es

Flavio Fuart P03 XLAB flavio.fuart@xlab.si

Damjan Murn P03 XLAB damjan.murn@xlab.si

Dejan Štepec P03 XLAB dejan.stepec@xlab.si

Tomaž Martinčič P03 XLAB tomaz.martincic@xlab.si

Marc Despland P06 ORANGE marc.despland@orange.com

History
Date Version Change

10-April-2020 0.1 ToC and task assignment

22- April-2020 0.2 OT contribution

02-June-2020 0.21 Consolidated OT contribution

15-June-2020 0.5 Contributions for DAL, IH, D&N and Security. Internal review

24-June-2020 0.6 Final corrections after internal review

30-June-2020 1.0 Final release

Key Data
Keywords API, Interface, development, software extension

Lead Editor Benjamín Molina – P01 UPV

Internal Reviewer(s) Gilda De Marco – P04 INSIEL

Paolo Casoto – P04 INSIEL

Luka Traven – P08 MEDRI

mailto:flavio.fuart@xlab.si
mailto:damjan.murn@xlab.si
mailto:dejan.stepec@xlab.si
mailto:tomaz.martincic@xlab.si
mailto:marc.despland@orange.com

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 3 de 77

Abstract
PIXEL Enabling ICT Infrastructure framework is one of the key outcomes of PIXEL activities. The main goal

is to compose a complete data-centric port solution, allowing data-level interoperability of different systems,

including legacy industrial and port operations systems.

This framework provides sound technological foundations for efficient and cost-effective execution of models,

simulations and predictions that are part of the PIXEL environmental impacts assessment model, to be used by

ports of the future for efficient management and tackling environmental issues. The framework will also

integrate supporting ICT tools for the calculation of the Port Environmental Index (PEI), as a key parameter to

improve operations in the ports of the future.

The most important asset of this deliverable is the provision of APIs in the different main building blocks of the

final PIXEL architecture as defined in deliverable D6.2. The main components are:

 The PIXEL Data Acquisition Layer, with a standard NGSI interface able to connect various types of

sensors to a common Broker. This Broker is also able to support subscription modes acting as a means

of exporting (notifying) data in real time.

 The PIXEL Information Hub, using the subscription mode to collect and store data from the Data

Acquisition Layer and offering a dual interface for data search and retrieval. On the one hand, there is

REST API to retrieve data that has been imported from sensor data. On the other hand, it also supports

access to the REST API exposed by the core storage open source component: Elasticsearch. The dual

support offers the bridge to port stakeholders to benefit for ELK (Elasticsearch, Logstash, Kibana) if

they are currently using them in their internal structures, facilitating the integration of different

platforms.

 The PIXEL Operational Tools are divided into two subcomponents. The first one related to the main

manager, which provides a REST (Swaggerized) API to manage models, predictive algorithms,

executions (instances) and scheduled executions. Furthermore, the API also allows managing KPIs and

linking them to event processing based on ElastAlert. The second component is particularized for every

model or predictive algorithm to be properly integrated in the PIXEL platform, so that they expose a

common API that simplifies the management.

 The PIXEL Dashboard does not have a proper interface as it represents the user interface; therefore,

it includes connectors to manage all other components (Information Hub, Operational Tools and

Security). However, the Notification system based on ElastAlert, as for the Operational Tools, includes

a REST API for generating rules, rule templates and notification mechanisms (alerts).

 The PIXEL Security framework includes a set of standard APIs and interfaces to guarantee a trusted

and secured interaction among components and users (authentication, authorization and accounting). It

is based on FIWARE components such as Wilma, Keyrock and AuthForce.

In addition to APIs that define how to interact with the different components of the architecture, this deliverable

also provides documentation for those subcomponents that are prone to be extended by software developers,

so that they can better the initial scope, their limitations but, at the same time, the potential enhancements and

how to achieve them in an efficient way according to specific port’s needs.

Finally, documentation is an ongoing work that should be updated throughout the lifetime of the project. Even

if this deliverable is scheduled for M26 and not the end of the project, any documentation update will be reflected

in the specific website of the project, placed at https://pixel-ports.readthedocs.io/en/latest/. This serves as main

entry point for the PIXEL documentation, covering updates both on deliverables D6.4 and D6.5.

https://pixel-ports.readthedocs.io/en/latest/

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 4 de 77

Statement of originality
This document contains material, which is the copyright of certain PIXEL consortium parties, and may not be

reproduced or copied without permission. This deliverable contains original unpublished work except where

clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has

been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the PIXEL consortium

(including the Commission Services) and may not be disclosed except in accordance with the consortium

agreement.

The commercial use of any information contained in this document may require a license from the proprietor

of that information.

Neither the project consortium as a whole nor a certain party of the consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Innovation and Networks Executive Agency

(INEA) is not responsible for any use that may be made of the information it contains.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 5 de 77

Table of contents

Table of contents ... 5

List of tables .. 7

List of figures .. 8

List of acronyms .. 10

1. About this document .. 12

1.1. Deliverable context .. 12

1.2. The rationale behind the structure .. 14

2. Introduction ... 15

3. PIXEL Data Acquisition .. 16

3.1. Overview .. 16

3.2. NGSI Agents .. 17

3.2.1. Labels for all agents ... 17

3.2.2. Labels for daemon agents .. 17

3.2.3. Labels for scheduled agents ... 18

3.2.4. Examples .. 18

3.3. DAL Orchestrator .. 19

3.3.1. Paths ... 19

3.3.2. Models ... 19

3.3.3. Quick start guide .. 20

3.4. Developer’s guide .. 22

3.4.1. Managing Data Format with Information Hub .. 22

3.4.2. Additional notes ... 23

4. PIXEL Information Hub .. 24

4.1. Overview .. 24

4.2. REST API .. 26

4.2.1. Paths ... 27

4.2.2. Models ... 33

4.3. Developer’s guide .. 34

4.3.1. Building from sources .. 35

4.3.2. Development environment ... 36

4.3.3. Potential extensions ... 38

5. PIXEL Operational Tools .. 44

5.1. Introduction .. 44

5.1.1. Main concepts and architecture ... 44

5.1.2. Models ... 45

5.1.3. Key Performance Indicators .. 46

5.1.4. Event processing .. 47

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 6 de 77

5.2. Developer’s guide .. 48

5.2.1. Identification of interfaces ... 48

5.2.2. Management interface .. 49

5.2.3. Execution interface .. 52

5.2.4. Software Extensions .. 54

5.2.5. Compilation from the sources .. 57

6. PIXEL Dashboard and Notification .. 61

6.1. Overview .. 61

6.2. Developer’s guide .. 62

6.2.1. Introduction .. 62

6.2.2. Folder structure (Client solution) ... 63

6.2.3. Add new views... 63

6.2.4. Internationalization .. 64

6.2.5. Notifications .. 66

6.2.6. Access to APIs ... 67

6.2.7. Add a new entity to the server solution ... 70

6.2.8. Add new visualizations .. 74

7. PIXEL Security ... 75

7.1. Overview .. 75

7.2. (REST) API .. 76

7.2.1. Paths ... 76

7.2.2. Models ... 76

7.3. Developer’s guide .. 77

7.3.1. Potential extensions ... 77

7.3.2. Additional notes ... 77

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 7 de 77

List of tables

Table 1. Deliverable context .. 12
Table 2. Information Hub services and corresponding Main classes .. 37
Table 3. Logging format example for model execution (error) ... 54
Table 4. Logging format example for model execution (success) ... 54

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 8 de 77

List of figures

Figure 1. Interaction scheme DAL- Dashboard with security support .. 16
Figure 2. Swagger UI for the DAL Orchestrator ... 19
Figure 3. Model schemas for the DAL Orchestrator API .. 20
Figure 4. Information Hub - Architecture overview .. 24
Figure 5. List of submodules ... 35
Figure 6. Build process .. 36
Figure 7. Docker images after building the IH .. 36
Figure 8. Zookeeper monitoring .. 39
Figure 9. Information Hub Management (TideSensorObserved example) ... 39
Figure 10. Orion entity (TideSensorObserved example) ... 40
Figure 11. Orion entity conversion by the Collector (TideSensorObserved example) 40
Figure 12. Nodes structure (Orion Data Collector) ... 42
Figure 13. Dockerfile for Orion Data Collector .. 43
Figure 14. Operational Tools - Architecture overview .. 44
Figure 15. Operational Tools - Functional overview .. 45
Figure 16. Link between models and the Operational Tools ... 46
Figure 17. Key Performance Indicators ... 47
Figure 18. Operational Tools- Event Processing overview ... 47
Figure 19. Operational Tools- Identification of interfaces .. 48
Figure 20. Operational Tools – Link interfaces and internal components... 49
Figure 21. Operational Tools – Management Swagger API.. 50
Figure 22. Operational Tools- Management APIs with code samples .. 51
Figure 23. Operational Tools- Management API ported to Apiary ... 52
Figure 24. Operational Tools- Execution interface overview ... 53
Figure 25: Dashboard diagram .. 61
Figure 26: Dashboard menu options .. 62
Figure 27: Dashboard features (client solution) .. 62
Figure 28: Folder structure .. 63
Figure 29: Example of views inside its container folder ... 64
Figure 30: Example of how to fulfil a menu entry in index.js file .. 64
Figure 31: Files used to translate PIXEL (called attending to their ISO Language Codes) 65
Figure 32: English translations for alerts functionality ... 65
Figure 33: Syntax, HTML Code .. 65
Figure 34: Syntax, JavaScript Code .. 66
Figure 35: Message syntax .. 66
Figure 36: Message appearance ... 66
Figure 37: Notification Syntax .. 66
Figure 38: Notification appearance ... 66
Figure 39: Content of the API folder ... 67
Figure 40: OTools endpoints ... 68
Figure 41: dataextractor API endpoints ... 68
Figure 42: Elasticsearch endpoints .. 69
Figure 43: Endpoints for resource entity .. 69
Figure 44: Request class for Operational Tools endpoints .. 70
Figure 45: Structure of server solution .. 71
Figure 46: Controller file ... 71
Figure 47: Service file ... 72
Figure 48: Example of model .. 72
Figure 49: Section for the import of the controller's entity ... 73
Figure 50: Section responsible for the routing of the controllers .. 73
Figure 51. . Operational Tools - Architecture overview .. 75

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 9 de 77

Figure 52. PIXEL security scheme .. 75
Figure 53. Related models for managing permissions .. 77

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 10 de 77

List of acronyms

Acronym Explanation

AIS Automatic Identification System

API Application Programming Interface

ARPA Agenzia regionale per la protezione ambientale

CEP Complex Event Processing

CRUD Create Read Update Delete (common functions in REST APIs)

DAL Data Acquisition Layer

DoA Description of Action

FAIR Facility for Antiproton and Ion Research

GIS Geographic information system

GPMB Grand port maritime de Bordeaux

GUI Graphic User Interface

i18n Internationalization (support for multiple languages)

ICT Information and communications technology

IdM Identity Management

IH Information Hub

IT Information Technology

KPI Key Performance Indicator

LDAP Lightweight Directory Access Protocol

LTS Long Term Storage

MVC Model View Controller (software design pattern common for UIs)

NGSI Name of the FIWARE API

NIFI Apache NiFi is a software project designed to automate the flow of data between

software systems

NMEA National Marine Electronics Association

OS Operating System

PAP Policy Administration Point

PCS Port Community System

PDP Policy Decision Point

PEI Port Environmental Index

PEP Policy Enforcement Point

PIP Policy Information Point

WP Work Package

PMS Port Management System

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 11 de 77

PMIS Port Management Information System

REST Representational state transfer

SILI Sistema Informativo Logistico Integrato

SotA State-of-the-Art

UI User Interface

URL Universal Resource Locator

Vue.js The Progressive Javascript Framework (similar to React and Angular)

XACML eXtensible Access Control Markup Language

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 12 de 77

1. About this document

This deliverable describes and provides the work related to APIs that has been done in the technical tasks of

WP6, Enabling ICT (Information and communications technology) infrastructure framework. The deliverable

consists of:

 A more descriptive part of the document, where developed software APIs are described for each of the

main components of the architecture. Inputs, outputs and return values (including errors) are given for

every endpoint to understand the whole functionality of each component. This should be the core part

and the main interest for typical developers.

 A more analytical part of this document, though also descriptive, showing the different parts of the

source code that could be potentially extended to meet specific port needs, so that external developers

can adapt and enrich the (source) code.

This document is a final deliverable, no further iteration is envisioned; however, any update during the project

will be reflected in PIXEL’s official documentation site: https://pixel-ports.readthedocs.io/en/latest/ .

1.1. Deliverable context

Table 1. Deliverable context

Keywords Description

Objectives Objective 1: Enable the IoT-based connection of port resources, transport

agents and city sensor networks

This deliverable provides the documentation of the APIs of the software

modules for IoT enablement and interconnection of different data providers

to be integrated in the architecture. The API already supports data collection

from generic sources. The document is complimentary with D6.4 to provide

the source code and full documentation at WP6 level, whereas the integration

and deployment itself will be finalised in WP7.

Objective 2: Achieve an automatic aggregation, homogenization and

semantic annotation of multi-source heterogeneous data from different

internal and external actors

D6.5 provides the different APIs of the different modules and submodules,

supporting the exchange of data models and data formats that facilitate the

aggregation and homogenization of the different modules of the architecture,

mainly Information Hub and Data Acquisition Layer.

Objective 3: Develop an operational management dashboard to enable a

quicker, more accurate and in-depth knowledge of port operations

The dashboard is provided in D6.4. However, this software makes use of the

different APIs of the other modules (e.g. Operational Tools and Information

Hub) described in D6.5

https://pixel-ports.readthedocs.io/en/latest/

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 13 de 77

Objective 4: Model and simulate port-operations processes for automated

optimisation

D6.4 provides the operational tools prototype resulting from T6.5. These

tools give high-level technological support for the configuration and

execution of models developed in WP4. The API specified in D6.5 allows to

first describe models and execute or schedule them.

Objective 5: Develop predictive algorithms

D6.4 provides the operational tools prototype resulting from T6.5. These

tools give high-level technological support for the configuration and

execution of predictive algorithms developed in WP4. The API specified in

D6.5 allows to first describe predictive algorithms and execute or schedule

them. Note that from the Operational Tools perspective the API was specified

in the same way for models and predictive algorithms to smooth the

alignment.

Exploitable results D6.5 provides the API documentation of the following exploitable assets:

PIXEL Data Acquisition; PIXEL Information Hub; PIXEL Operational

Tools; PIXEL Integrated Dashboard and Notification; PIXEL Security and

Privacy. It is complimentary to D6.4 for software developers who intend to

understand the full potential of the components, or even modify or extend

them with additional features.

Work plan This deliverable is the result of work performed from M7 to M26 on tasks

T6.2 – PIXEL Data Acquisition, T6.3 - PIXEL Information Hub, Task 6.4 -

PIXEL Operational Tools, T6.5 - PIXEL Integrated Dashboard and

Notification, Task 6.6 – PIXEL Security and Privacy.

Milestones This deliverable, together with D6.4, serves as verification of the MS7 ICT

solution developed (M26).

Deliverables This deliverable follows the system architecture defined in D6.2 PIXEL

Information system architecture and design v2, describing the different APIs

of each of the modules encompassing the architecture. This deliverable is the

only one related to API documentation. Any update during the project will

be reflected in PIXEL’s official documentation site: https://pixel-

ports.readthedocs.io/en/latest/

Risks WT5#6 Technical activities are not completed on time, are not aligned with

the main objective, are not accurate or present a lack of consistency.

This deliverable shows that technical activities related to T6.2 – T6.6 have

been executed in a timely fashion in accordance to the architecture proposed

in D6.2.

WT5#14 Due to harshly divergences between formats of output/input data

of ICT systems to integrate, the development can be delayed or paralyzed,

and some extra effort will be needed to carry out the project.

Particular attention is being devoted to the analysis and definition of data

models in WP6. While the generic principles have been provided in D6.2,

this deliverable provides a more detailed list of data entities identified in

PIXEL. This mainly relates to FIWARE data models as well as models a

predictive algorithms description formats.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 14 de 77

WT5#15 IoT components have security vulnerabilities.

This assessment is part of T6.6. The software is described in D6.4 whereas

its API is documented in D6.5. This allows to provide an assessment of IoT

security vulnerabilities in PIXEL use-cases.

1.2. The rationale behind the structure
This document describes the work performed in T6.2 – T6.6 of PIXEL related to APIs documentation. It should

be considered as a ‘joint pack’ with D6.4 in order to have a full documentation of the software produced in

PIXEL, both at user’s and developer’s level. Both deliverables describe each of the modules identified in D6.2,

focusing D6.5 mainly on APIs documentation. This report consists of the following sections:

1. About this document: Deliverable context in relation to the PIXEL DoA, work packages, tasks and

other deliverables.

2. Introduction: Relation with PIXEL objectives, use cases and requirements.

3. PIXEL Data Acquisition: Identification of subcomponents and interfaces, with special focus on NGSI

Agents and DAL orchestrator to correctly manage them via Docker containers.

4. PIXEL Information Hub: Identification of components, REST API, compilation from sources,

associated Docker instances and hints for software extensions.

5. PIXEL Operational Tools: Identification of interfaces, mainly at management level, to publish,

execute and schedule algorithms. Compilation from sources is also provided.

6. PIXEL Integrated Dashboard and Notification: Identification of subcomponents and interfaces, with

special focus on the different files needed to be modified for configuration and extension based on a

MVC development pattern.

7. PIXEL Security and Privacy: Identification of interfaces and description of the different FIWARE

enablers able to support different aspects for authentication and authorization. They are open source

tools with a wide community support.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 15 de 77

2. Introduction

Developments of the PIXEL ICT Infrastructure Framework are driven by real needs of the ports involved in the

project. Those needs and requirements are the key results of WP3. In order to keep development in line with

overall PIXEL objectives, each technical deliverable provides an introductory section where the relation with

objectives, use cases and requirements is defined.

The relation with PIXEL objectives, use cases and requirements have already been described in deliverables

D6.3 and D6.4, therefore this document will be mainly focussed on APIs and potential extensions of the different

architecture modules.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 16 de 77

3. PIXEL Data Acquisition

3.1. Overview
The main purpose of the Data Acquisition Layer (DAL) is to interface the external data sources to the PIXEL

Information Hub and to convert the original and heterogeneous data formats to PIXEL Data Models.

Figu. Data Acquisition Layer - Architecture overview

The Data Acquisition Layer exposes an API to the PIXEL Dashboard to allow the administrator to manage the

different NGSI Agents, and it interacts with the PIXEL Security module to protect the NGSI Agents.

Figure 1. Interaction scheme DAL- Dashboard with security support

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 17 de 77

The main activity of the DAL relates to NGSI Agents pushing data to Orion. Then the Information Hub

subscribes to new data using the subscription API of FIWARE Orion. It is then notified using a call-back when

new data arrive.

The API of FIWARE Orion is well documented by FIWARE. The documentation on the NGSIv2 API is

available here, and documentation on how to use it is available here.

To facilitate NGSI Agents management, the DAL provides an orchestrator that pilots the creation of the NGSI

Agents using a Docker Interface. The DAL Orchestrator also communicates with the DAL Proxy to

automatically expose new daemon NGSI Agents behind WILMA. The DAL Orchestrator exposes its API to the

Dashboard to allow the creation of an administrative UI.

The DAL Orchestrator also communicates with the Keyrock enabler to manage the permissions on WILMA for

each NGSI Agent that exposed an API through the DAL Proxy.

3.2. NGSI Agents

NGSI Agents are the small software pieces used to import data from external data sources into the PIXEL

platform through the Data Acquisition Layer. There are 3 kinds of NGSI Agents:

 Daemon: running as a server to manage data continuously

 Scheduled: starts automatically at the given period

 Manual: running only when asked (on demand)

In order to run as an NGSI Agent (as Docker container) it needs some special configurations. Those

configurations are done using Docker LABEL that could be overwritten when deploying an agent on the

destination platform.

In order to be identify the Docker image of an agent it has to contains specifics labels.

3.2.1. Labels for all agents

 ngsiagent="pixel": this is the key label to be identified as a NGSI Agent

 ngsiagent.type="daemon": define the type of NGSI Agent daemon, scheduled or manual

 ngsiagent.datasources="[\"urn:pixel:DataSource:dummies\"]": this label provides the name of the

datasource managed by this agent

 ngsiagent.datamodels="[\"/Dummies/minimal-schema.json\"]": this label provide the path to each

JSON Schema generated by the agent

The DataModels Path is the relative path to the specs folder of the Data_Models repository.

For example for the data model TideSensorObserved the label should be set like this:

ngsiagent.datamodels="[\"/Pixel/TideSensorObserved/schema.json\"]"

3.2.2. Labels for daemon agents

 ngsiagent.internal.port: the port exposing the API, it also has to be specified with ÈXPOSE

 ngsiagent.internal.path: the base path of the API configured in the agent

 ngsiagent.external.path: the base path of the API configured in the proxy to expose the agent

http://telefonicaid.github.io/fiware-orion/api/v2/stable/
https://fiware-orion.readthedocs.io/en/master/user/walkthrough_apiv2/index.html
https://gitpixel.satrdlab.upv.es/iglaub/Data_Models

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 18 de 77

3.2.3. Labels for scheduled agents

 ngsiagent.scheduled: the frequency to run the agent (CRON format)

* * * * * *

| | | | | |

| | | | | +-- Year (range: 1900-3000)

| | | | +---- Day of the Week (range: 1-7, 1 standing for Monday)

| | | +------ Month of the Year (range: 1-12)

| | +-------- Day of the Month (range: 1-31)

| +---------- Hour (range: 0-23)

+------------ Minute (range: 0-59)

3.2.4. Examples

 Daemon
FROM nginx

LABEL ngsiagent="pixel"

LABEL ngsiagent.type="daemon"

LABEL ngsiagent.internal.port="80"

LABEL ngsiagent.internal.path="/api"

LABEL ngsiagent.external.path="/empire"

LABEL ngsiagent.datasources="[\"urn:pixel:DataSource:dummies\"]"

LABEL ngsiagent.datamodels="[\"/Dummies/minimal-schema.json\"]"

EXPOSE 80

ENV PIXEL=test

ENV MYTEST=pixel

RUN mkdir /usr/share/nginx/html/api

RUN echo "Execute order 66" > /usr/share/nginx/html/api/order

ENTRYPOINT ["nginx"]

CMD ["-g", "daemon off;"]

 Scheduled
FROM ubuntu

LABEL ngsiagent="pixel"

LABEL ngsiagent.type="scheduled"

LABEL ngsiagent.scheduled="* * * * *"

LABEL ngsiagent.datasources="[\"urn:pixel:DataSource:dummies\"]"

LABEL ngsiagent.datamodels="[\"/Dummies/minimal-schema.json\"]"

ENV PIXEL=test

ENV MYTEST=pixel

ENV SCHEDULED_DELAY=0

COPY docker_entrypoint.sh /docker_entrypoint.sh

RUN chmod u+rx /docker_entrypoint.sh

ENTRYPOINT ["/docker_entrypoint.sh"]

 Manual
FROM ubuntu

LABEL ngsiagent="pixel"

LABEL ngsiagent.type="manual"

LABEL ngsiagent.datasources="[\"urn:pixel:DataSource:dummies\"]"

LABEL ngsiagent.datamodels="[\"/Dummies/minimal-schema.json\"]"

ENTRYPOINT ["/bin/bash"]

CMD ["date"]

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 19 de 77

3.3. DAL Orchestrator
The DAL Orchestrator has been developed to simplify the deployment and management of the NGSI Agents

offering an API to be managed. The server exposes a Swagger and SwaggerUI to simplify the integration for

the developer.

 http://<server ip>:<exposed port>/api-docs

3.3.1. Paths

The full API is described in a Swagger file. The list of functions is listed below.

Figure 2. Swagger UI for the DAL Orchestrator

3.3.2. Models

The swagger file (UI) also describes the models used with this API

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 20 de 77

Figure 3. Model schemas for the DAL Orchestrator API

3.3.3. Quick start guide

 NGSI Image management

For security purposes, right now you have to run the command of docker pull to get (pull) the NGSI Agents

images directly on the host. The next version will propose to manage that using the API.

You can request the list of available NGSI Agents images already available on the host with an API call:

curl -H "X-Auth-Token: default" http://172.17.0.1:8888/api/images

[

 {

 "id": "sha256:620877b976447800bc7ce8672d6b688369b429ad77afba0968f20088c8daf8fd",

 "tag": "pixelh2020/frbodtidesensor:1.0.0"

 }

]

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 21 de 77

 Get a template

When you have chosen the image of your NGSI Agents, you can generate a template to create it

curl -H "X-Auth-Token: default"

http://172.17.0.1:8888/api/images/sha256:620877b976447800bc7ce8672d6b688369b429ad77afba096

8f20088c8daf8fd/template

{

 "name": "/?[a-zA-Z0-9_-]+",

 "image": "pixelh2020/frbodtidesensor:1.0.0",

 "type": "scheduled",

 "scheduled": "22 * * * *",

 "datasources": [

 "urn:pixel:DataSource:frbod:TideSensorObserved"

],

 "datamodels": [

 "/Pixel/TideSensorObserved/schema.json"

],

 "environment": [

 {

 "key": "PATH",

 "value": "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"

 },

 {

 "key": "NODE_VERSION",

 "value": "13.6.0"

 },

 {

 "key": "YARN_VERSION",

 "value": "1.21.1"

 },

 {

 "key": "NODE_TLS_REJECT_UNAUTHORIZED",

 "value": "0"

 },

 {

 "key": "ORION_URL",

 "value": "changeit"

 },

 {

 "key": "NAMI_AUTH_URL",

 "value": "https://nami.bordeaux-port.fr/?q=accueil"

 },

 {

 "key": "NAMI_URL",

 "value": "https://nami.bordeaux-port.fr/hauteurs"

 },

 {

 "key": "NAMI_LOGIN",

 "value": "changeit"

 },

 {

 "key": "NAMI_PASSWORD",

 "value": "changeit"

 },

 {

 "key": "FIWARE_SERVICE="

 },

 {

 "key": "FIWARE_SERVICE_PATH="

 }

]

}

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 22 de 77

 Create the NGSI Agent

Change the name of the agent (it will be the name of the container) and adjust the parameters or let their

default values. Be sure that your name match the given pattern.

curl -X POST -H "X-Auth-Token: default" http://172.17.0.1:8888/api/ngsiagent -d @- <<EOF

{

 "name": "/my-agent",

 "image": "pixelh2020/frbodtidesensor:1.0.0",

 "type": "scheduled",

 "scheduled": "22 * * * *",

 "datasources": [

 "urn:pixel:DataSource:frbod:TideSensorObserved"

],

 "datamodels": [

 "/Pixel/TideSensorObserved/schema.json"

],

 "environment": [

 {

 "key": "ORION_URL",

 "value": "http://172.17.0.1:1026"

 },

 {

 "key": "NAMI_LOGIN",

 "value": "mylogin"

 },

 {

 "key": "NAMI_PASSWORD",

 "value": "mypassword"

 }

]

}

EOF

3.4. Developer’s guide

3.4.1. Managing Data Format with Information Hub

To allow the Information Hub to automatically import data from Orion, it was decided to publish Data Sources

and Data Formats in the Orion database. That information is fulfilled by the DAL Orchestrator using the

information contained in the Dockerfile of the NGSI Agents.

 DataSource format is

{

 "id": "urn of the data source",

 "type": "DataSource",

 "name": {

 "type": "Text",

 "value": "the source name if it is not an urn"

 }

}

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 23 de 77

 DataModel format is

{

 "id": "type name as declared in the orion entity",

 "type": "DataModel",

 "schema": {

 "type": "StructuredValue",

 "value": an object containing the json schema

 },

 "schemaUrl": {

 "type": "string",

 "value": "an url to the schema"

 },

 "schemaEncoded": {

 "type": "STRING_URL_ENCODED",

 "value": "a text version URL encoded of the schema if it contains forbidden

characters"

 }

}

Here schemaUrl is mandatory, schema should be provided for compatibility reasons with previous version,

and schemaEncoded has to be present only if the schema contains forbidden chars.

 SourceModelRelation format is

{

 "id": "urn of the relation datasource/dataModel",

 "type": "SourceModelRelation",

 "source": {

 "type": "Text",

 "value": "urn/id of the DataSource"

 },

 "model": {

 "type": "Text",

 "value": "Data Model provide by the DataSource"

 }

}

3.4.2. Additional notes

To facilitate development a docker-compose is provided, with a shell script to create the environment test

needed to develop and test the DAL Orchestrator.

This environment allows running the complete tests suite delivered with the software.

The start.sh script allows creating a nodejs environment to develop with DAL Orchestrator.

Refer to the README.md for detailed documentation of the software architecture.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 24 de 77

4. PIXEL Information Hub

4.1. Overview
As described in D6.2, the Information Hub is a functional block in charge of centralising all the data retrieved

from the DAL, homogenising and storing in a database capable to support big queries and scale horizontally.

Unlike the DAL, the Information Hub is designed to be high performant and scalable, and the data is stored to

support long-term queries. This is considered the central storage point of the IoT solution in PIXEL and is the

block that replies the queries from other functional blocks (such as Operational Tools or Dashboards) and

externals (API). The Information Hub’s main components are a high-performance data broker and a NoSQL

database, although it contains accessory components that support its correct functioning.

The following diagram depicts the architecture of Information Hub (source: D6.2):

Figure 4. Information Hub - Architecture overview

The Information Hub consists of several parts conceptually divided into components that push data towards the

database (downstream), components involved in stored data retrieval and further processing (upstream) and

components responsible for data persistence and storage. In addition, the system provides supporting services

for configuring, managing and monitoring the Information Hub and libraries contributing to greater extensibility

and reusability. Below is a list of all services that form the Information Hub.

Components involved in the downstream flow:

● Data Collector

● Data Writer

● Data Broker

● Data Reductor

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 25 de 77

 Data Processor

Components involved in the upstream flow:

● Data Extractor

● Data Broker

Storage components:

● Short-Term Storage

● Long-Term Storage

● Configuration Service

Supporting components:

● Context Service

● Instance Monitor

● Data Collector Controller

● Data Writer Controller

● Data Processor Controller

● Data Reductor Controller

● Data Extractor Controller

● Management Console

The Controller components form the Data Worker Controller Group. Together with the Context Service and

Instance Monitor they provide REST and SSE endpoints for configuring and monitoring the Information Hub,

e.g. from another network, without imposing dependencies on core components. This is accomplished by an

agreement that all interactions between core components and other parts of the system must be realized through

the Configuration Service.

Multiple supporting components belonging to the Data Worker Controller Group are used for configuring the

Information Hub at different stages by accessing and modifying data in the Configuration Service. Client

applications communicate with controller components using an HTTP REST protocol and server sent

notifications, both implemented on top of the Jersey framework. To reduce code duplication and provide

common ways of accessing controller APIs, the Controller Library has been developed as a thin client library,

containing REST API resource definitions and helper methods encapsulating Jersey framework specifics. The

Context Service has been developed for a similar purpose but is not restricted to controlling only one specific

core component. Therefore, it provides REST endpoints for configuring Sources and Source Types, regulates

system maintenance and other common operations.

The Information Hub has a built in mechanism for monitoring hardware utilization and data flow in different

stages of the Information Hub data pipeline. Similar to controllers, the Instance Monitor provides REST and

SSE endpoints. In comparison to controllers it also depends on long term storage, for retrieving the

aforementioned metrics and for persisting non-configuration related data. Utilization and data flow metrics are

retrieved in form of status event records and analysed based on pre-programmed conditions to produce system

notification.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 26 de 77

4.2. REST API
As described in the previous chapter, following Information Hub services provide a REST API for configuring

and monitoring the Information Hub:

● Context Service

● Data Monitor

● Data Collector Controller

● Data Writer Controller

● Data Processor Controller

● Data Reductor Controller

● Data Extractor Controller

Furthermore, Data Extractor provides a REST API for querying the data archived in both the short-term and

long-term storages.

Complete specification of Information Hub APIs is available at the PIXEL Documentation Hub in the form of

Swagger generated documentation.

https://pixel-ports.readthedocs.io/en/latest/

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 27 de 77

4.2.1. Paths

Context Service

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 28 de 77

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 29 de 77

Data Monitor

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 30 de 77

Orion Collector Controller

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 31 de 77

Data Writer Controller

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 32 de 77

Data Extractor

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 33 de 77

4.2.2. Models

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 34 de 77

4.3. Developer’s guide
The Information Hub is developed in Java technology and managed by the Maven tool. It is organized as a

multi-module Maven project where each module is located in its own Git repository. The main repository is

information-hub-aggregator which contains a Maven aggregator POM file which specifies all modules of the

project. In addition to this aggregator POM the project also contains a parent POM which defines common

Maven configuration that is inherited by other modules. The parent POM file is located in the information-hub-

parent repository. The information-hub-aggregator repository includes other repositories as Git submodules. A

submodule is a Git repository nested inside a parent Git repository at a specific path in the parent repository’s

working directory. Submodules are configured in the .gitmodules file located in the root of the information-hub-

aggregator repository.

The Information Hub is distributed as a set of Docker images and can be deployed using the Docker Compose

tool. The information-hub-docker repository provides Docker Compose projects for installing Information Hub

together with Elasticsearch. The POM file contains Maven configuration for building Docker images during the

package phase using Spotify Dockerfile Maven plugin.

The Information Hub Management Console is a Java desktop application and is distributed as a ZIP archive

containing an executable JAR package with dependencies and a configuration file. The source code is located

in app-controller-gui repository and is included in the information-hub-aggregator repository as apps/app-

https://gitpixel.satrdlab.upv.es/xlab/information-hub-aggregator
https://gitpixel.satrdlab.upv.es/xlab/information-hub-docker

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 35 de 77

controller-gui module. The Management Console is developed with the JavaFX software platform. It can be

built and run using Oracle JDK or OpenJDK; however, OpenJDK requires additional JavaFX libraries.

4.3.1. Building from sources

Required tools:

● Git

● JDK 8 (OpenJDK or Oracle JDK can be used)

● Maven 3

● Docker

Clone the information-hub-aggregator repository:

git clone https://gitpixel.satrdlab.upv.es/xlab/information-hub-aggregator.git

Navigate to the information-hub-aggregator directory and initialize Git submodules of the project using

following command:

git submodule init

Update the submodules by running:

git submodule update

This command will clone missing submodules and checkout the commit specified in the index of the containing

repository. This will leave the submodule repositories in a detached HEAD state by default.

To display a list of all submodules, currently checked out commit for each submodule together with its status,

run the ‘git submodule status’ command:

Figure 5. List of submodules

Build the project using following command:

mvn package

To speed up the build process you can use the -Dmaven.test.skip=true switch. When done, maven will print the

build summary as depicted in the figure below:

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 36 de 77

Figure 6. Build process

The Maven builds all the modules into JAR archives and generates Docker images for all modules representing

Information Hub services. To view the generated Docker images, run the following command:

Figure 7. Docker images after building the IH

4.3.2. Development environment

The Information Hub can be run in the local development environment from the Java IDE. First clone and

initialize the information-hub-aggregator project as described in the previous section. The Information Hub

requires following third-party software for running:

● Apache Zookeeper

● Apache Kafka

● Elasticsearch

● Orion Context Broker if Orion Data Collector is used

The information-hub-docker repository provides Docker Compose projects for deploying all the required

software. Clone the repository, navigate into kafka-zookeeper, elastic and orion-context-broker directories and

run ‘docker-compose up -d’ command to deploy corresponding services.

Add following entries to the /etc/hosts file:

172.17.0.1 csco.archiving.broker

172.17.0.1 csco.archiving.config

172.17.0.1 csco.archiving.sts csco.archiving.lts

https://gitpixel.satrdlab.upv.es/xlab/information-hub-aggregator
https://gitpixel.satrdlab.upv.es/xlab/information-hub-docker

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 37 de 77

172.17.0.1 csco.archiving.controller

172.17.0.1 csco.archiving.monitor

csco.archiving.broker represents Apache Kafka hostname, csco.archiving.config represents Apache Zookeeper

hostname and csco.archiving.sts / lts Elasticsearch. Adapt the IPs accordingly if you deployed these services to

a different machine.

Orion Data Collector’s configuration is located in the infhub.properties file inside orion-data-collector module:

orion.address=http://172.17.0.1:1026

orion.header.fiware-service=

orion.header.fiware-servicepath=

orion-collector.notification.callback.url=http://172.17.0.1:9009

orion-collector.notification.listener.port=9009

After finishing the configuration, you can start the Information Hub services and management console by

running following Java classes from your IDE:

Table 2. Information Hub services and corresponding Main classes

Service Main class

information-hub-controller si.xlab.pixel.infhub.controller.InfHubController

srv-data-monitor de.gsi.cs.co.sv.archiving.monitor.MonitorService

orion-data-collector si.xlab.pixel.infhub.collector.orion.OrionDataCollector

srv-data-writer de.gsi.cs.co.sv.archiving.writer.Writer

srv-data-extractor de.gsi.cs.co.sv.archiving.extractor.Extractor

app-controller-gui de.gsi.cs.co.sv.archiving.gui.admin.ArchivingAdminApp

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 38 de 77

4.3.3. Potential extensions

The Information Hub is designed in a modular and scalable way and as generic as possible. This design allows

it to be easily extended with new functionalities. Archiving System, the base of Information Hub which was

developed by XLAB for the FAIR (Facility for Antiproton and Ion Research) particle accelerator facility in

Darmstadt, Germany was extended for the needs of PIXEL project with following new components:

● Orion Data Collector: new type of the Data Collector component which collects data from data sources

on Orion Context Broker.

● AIS Data Collector: new type of the Data Collector component which collects AIS data from AISHub

sharing service.

● Data Processor: new type of component which can be plugged into the Information Hub platform and

is used for on-the-fly (near real-time) data processing of incoming data streams. Specifically, this type

of component was used for ETD (estimated time of departure) calculation on the VesselCall data

records.

● Data Processor Orchestrator: new type of component which takes care for managing Data Processors

and routing data streams through them by using Apache Kafka topics.

4.3.3.1. Implementing Data Collector for a new data source

The Data Collector is a component responsible for obtaining data records from various devices and data sources,

filtering and pre-processing data records and pushing them downstream through the Data Broker for further

processing. Multiple types of Data Collector components can be used simultaneously to collect data from

different data sources. In addition to the Data Collector component, the Data Collector Controller is also

required which provides a REST API for controlling and managing Data Collector instances.

To develop a Data Collector for a new type of data source, you can take the Orion Data Collector project as a

sample available in the orion-data-collector repository. The corresponding Data Collector Controller project is

available in the orion-data-collector-controller repository.

The OrionDataCollector class serves as a Collector’s entry point. It gets the Collector’s configuration file path

provided as a command-line parameter and initializes an OrionCollectorContext instance using this path. The

COMPONENT_NAME field is used as a service name for displaying in the Information Hub management

console. Finally, the OrionDataCollector instantiates and runs OrionCollectorController which controls the

operation of the collector.

The OrionCollectorContext object loads configuration properties from the provided configuration file and

exposes them through getter methods. It creates an instance of StatusProducer which is used for reporting the

Collector service status information to the Monitoring service which is displayed in the Information Hub

management console.

The OrionConfigService serves for managing Collector service’s configuration in Apache Zookeeper which is

used as a centralized config storage. When Collector starts, it registers in the Zookeeper as depicted in the

following figure:

https://gitpixel.satrdlab.upv.es/xlab/orion-data-collector
https://gitpixel.satrdlab.upv.es/xlab/orion-data-collector-controller

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 39 de 77

Figure 8. Zookeeper monitoring

All the configuration and management of the Collector goes via the Zookeeper. Collector sets a watch on the

corresponding znode in ZooKeeper which triggers on any change. When the Collector Controller (API) updates

the configuration in Zookeeper, the Collector gets a notification and takes an appropriate action, for example

starts collecting new data source. This way scalability is achieved, and new Collector instances can be added

dynamically.

The OrionDataCollectorWorker is responsible for collecting data from Orion Context Broker and managing

subscriptions to data sources in Orion. When a new Orion data source is allocated to the Collector instance by

the load balancer (through Zookeeper), the OrionDataCollectorWorker subscribes to notifications of data source

events and creates a notifications handler. The notification handler accepts notification messages, extracts Orion

entities and converts them to JSON objects containing a map of attribute name-value pairs in accordance with

the source type schema.

Let’s take as an example the TideSensorObserved source type. The schema of the source type as shown in

Information Hub management console is depicted in the following figure:

Figure 9. Information Hub Management (TideSensorObserved example)

Orion sends data entities in the following format as depicted in figure below:

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 40 de 77

Figure 10. Orion entity (TideSensorObserved example)

The Collector converts this Orion entity from Orion format to the following JSON object containing map of

attribute name-value pairs:

Figure 11. Orion entity conversion by the Collector (TideSensorObserved example)

The Collector then converts the JSON object into a JSON string and creates an ArchiveRecord object:

String recordJson = record.toString();

ArchiveRecord archiveRecord = new ArchiveRecord(

 source.getSourceTypeId(),

 source.getSourceId(),

 System.currentTimeMillis());

archiveRecord.setRecordId(orionRecord.get("id").asText());

archiveRecord.setData(recordJson.getBytes());

The ArchiveRecord constructor has three parameters: source type ID, source ID and timestamp. The current

time is used as the record timestamp in this case. The Orion entity ID is used as the record ID which makes

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 41 de 77

possible to provide the updating records functionality. If a record with the same ID already exists in

Elasticsearch, the existing record will be updated instead of a new one created. The content of archiveRecord is

set using the setData method to the JSON object shown above converted to a byte array.

The ArchiveRecord is then pushed downstream through the Data Broker (Apache Kafka is used as a data

broker). Each data source uses its own data publisher (IDataPublisher object) because sources might be routed

to different Kafka topics according to the routing table which enables additional on-the-fly data processing in

Data Processor components. The OrionDataCollectorWorker takes suitable publisher from the publishers’ map

and publishes the data record:

IDataPublisher publisher = this.publishers.get(source.getSourceId());

publisher.send(source, record);

4.3.3.2. Implementing a new component

To support some custom functionality, it may be required to develop a new component type for the Information

Hub. For example, a Data Processor component was developed to support on-the-fly data processing

functionality.

Following the project structure, it is recommended for developing a new component:

4.3.3.2.1. Main class

The main class (e.g. OrionDataCollector) provides an entry point to the application (main method) which is

used for starting the service. The main class accepts configuration file path as a command-line parameter (if

needed), initializes the component context and creates and starts the component's controller.

4.3.3.2.2. Controller

The Controller class (e.g. OrionCollectorController) contains logic for controlling the instance life cycle. At

start up, it connects to the configuration service (Zookeeper), retrieves the component configuration and

initializes and starts the operation of the service. Afterwards it continues to monitor the values in the

configuration service and applies any changes there to the local operation.

The controller class must extend ServiceController abstract class defined in lib-core library:

public abstract class ServiceController<T extends IServiceContext> {

 protected abstract void start(T context, InstanceData instanceConfig);

 protected abstract void stop(boolean maintenance);

 protected void applyInstanceConfig(InstanceData instanceConfig){

 // Override

 }

 protected void applyComponentConfig(ComponentData componentConfig){

 // Override

 }

}

The start method is called when the service is started. It provides an InstanceData object containing the instance

configuration in Zookeeper. The stop method is called when the stop of the service has been triggered. The

maintenance parameter reveals if the stop was triggered by the operator activating the maintenance mode. The

applyInstanceConfig method is called when the component configuration in Zookeeper is changed and the

method has to apply those changes to the service operation. The applyComponentConfig method is called when

common Information Hub components configuration has been changed.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 42 de 77

4.3.3.2.3. Context
The Context class (e.g. OrionCollectorContext) contains all the runtime configuration of the currently running

instance. It reads settings from the configuration file, environment variables and config service of the

Information Hub. Furthermore, it creates an instance of StatusProducer for reporting service status information

and provides this instance through getter method.

The Context class must extend ServiceContext class defined in lib-core library and may extend following

methods to provide customized implementation:

InstanceConfigService getConfigService();

StatusProducer getStatusProducer();

InstanceData getDefaultInstanceConfiguration();

boolean doInit()

The getConfigService method returns an InstanceConfigService corresponding to the component for

managing the component configuration in Zookeeper. The getStatusProducer method provides a

StatusProducer instance. The getDefaultInstanceConfiguration method creates and returns an InstanceData (or

appropriate child class) object containing default component configuration which is used when component is

started for the first time to initialize the instance configuration node in Zookeeper. The doInit method can be

overridden to load component specific configuration from configuration file or environment variables.

4.3.3.2.4. InstanceConfigService

The InstanceConfigService instance (e.g. OrionConfigService) provides methods for retrieving and managing

component’s configuration in the Zookeeper as well as paths to the appropriate nodes in the ZooKeeper. To use

standard znodes structure for generic Information Hub components, extend the ComponentConfigService class

and provide suitable ID which will be used as a node name:

public class MyConfigService extends ComponentConfigService {

 private static String COMPONENT_ID = "MyComponent";

 public MyConfigService() {

 super(COMPONENT_ID);

 }

}

The figure below depicts nodes structure for Orion Data Collector component:

Figure 12. Nodes structure (Orion Data Collector)

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 43 de 77

4.3.3.2.5. Worker

The Worker class (e.g. OrionDataCollectorWorker) contains logic for the core operation of the component. It

is instantiated and started by the Controller.

4.3.3.2.6. Configuration file and Log4j configuration

Static configuration properties (which don’t change in runtime) can be put into configuration properties file

which is loaded at the component start up by the Context class.

The Information Hub uses Apache Log4j 2 logging framework. The log4j2.xml file contains the logging

configuration.

4.3.3.2.7. Dockerfile

The Dockerfile contains instructions for the Docker tool to build the Docker image of the component. The

Information Hub is distributed as a set of Docker images; each component is packed into its own image.

‘openjdk:8-jre-alpine’ is used as a base image for Information Hub components. The figure below depicts

Dockerfile for Orion Data Collector component:

Figure 13. Dockerfile for Orion Data Collector

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 44 de 77

5. PIXEL Operational Tools

5.1. Introduction

5.1.1. Main concepts and architecture

The Operational Tools (OT) are mainly in charge of bringing closer to the user both the models and predictive

algorithms developed within the PIXEL project. By user here we mean administrators and managers analysing

port operations by means of simulation models and predictive algorithms. In order to reach that goal, a set of

high-level tasks are defined:

 Publish models and/or predictive algorithms

 Edit and configure the models and/or predictive algorithms

 Execute models and/or predictive algorithms

 Schedule models and/or predictive algorithms to be executed at a specific time once or periodically

 Define different operational and environmental Key Performance Indicators (KPIs), based on specific

data available in the information hub for tracking and monitoring purposes

 Establish some pattern detection mechanism. The most basic one is the use of triggers.

 Get the trends of a model and/or predictive algorithm (e.g. historical data)

Figure 14. Operational Tools - Architecture overview

The functional overview of the Operational Tools is depicted in the Figure below. Several internal components

can be identified:

 OT UI: this is the graphical interface to access (most of) the underlying functionalities. This component

provides independence and autonomy, but it can be later integrated as part of the PIXEL dashboard to

provide a single-entry point for administrators

 OT API: backend API implementing the functionalities needed. This component is aligned with PIXEL

security framework in order to fulfil all required security policies (e.g. authentication, authorization,

etc.)

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 45 de 77

 Publication component: it allows publishing both models and predictive algorithms. By publishing it

may be necessary to deploy the models as Docker containers. Besides, the models ‘and predictive

algorithms’ configurations can also be edited.

 Engine: this component is responsible for executing the different models and predictive algorithms. The

execution can be invoked in real time or scheduled.

 Data processing: it is responsible for managing trends from specific data (KPIs) and also for some

internal data adaptations required.

 Event processing: this component is responsible for real-time monitoring of indicators and trigger

specific actions depending on previously configured rules. It includes a connector (bridge) to be

integrated with an external notification system.

 Database: the database includes description of the models and predictive algorithms that can be used,

KPI description, rules as well as other configuration and output related parameters necessary for the

correct behaviour of the internal building blocks.

Figure 15. Operational Tools - Functional overview

5.1.2. Models

Models are entities in the PIXEL platform than will be used by port administrators to run and simulate models

and predictive algorithms with different input parameters. As every model and predictive algorithm is different

from each other and has its own internals, there is a need to homogenize a common abstract model entity to be

the internal representation in the PIXEL platform. It encompasses two different types of developments that have

been done within the PIXEL project:

 Models: models relate to energy, traffic and environment. A specific model is the Port Environmental

Index (PEI). For more information about the models, please check the PIXEL main documentation

repository by clicking here.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 46 de 77

 Predictive algorithms: predictive algorithms relate to estimating time of arrival in ports, traffic at gates

and use of AIS data. For more information about the models, please check the PIXEL main

documentation repository by clicking here.

The Figure below shows the process experienced by any model or predictive algorithm that is going to be used

inside the PIXEL platform:

 The model or predictive algorithm is first drafted as algorithm and implemented as program.

 The model is encapsulated into a Docker container to convert it into a portable component. Additionally,

an OT adaptor is attached to his Docker container in order to be integrated into the PIXEL platform.

 Through the publication process the model or predictive algorithm becomes aware into the PIXEL

platform. The Docker image is pulled from the (open) GitHub repository and can be used internally.

 After published, the model or predictive algorithm can be executed by passing the appropriate

arguments (parameters) as JSON file. The description of this JSON file will be described in future

sections. The execution can run immediately (real time) or it can be scheduled to be performed

periodically (e.g. every day or week).

 The results of the model are stored into the PIXEL Information Hub, which can be queried by the PIXEL

dashboard to visualize them in form of particular graphs depending on the model or predictive

algorithm.

Figure 16. Link between models and the Operational Tools

5.1.3. Key Performance Indicators

According to Wikipedia a Key Performance Indicator (KPI) is a type of performance measurement. KPIs

evaluate the success of an organization or of a particular activity in which it engages. For the PIXEL project,

we envision that basic KPIs will mostly refer to:

 Sensors: the PIXEL platform encompasses an IoT network and can therefore monitor any integrated

sensor. Some of the sensors may represent an important impact on the decision made from port

authorities (e.g. depending on the tide level or the wind speed some cargo type is not recommended to

be loaded/unloaded).

 Models and Predictive algorithms: models and predictive algorithms are typically complex and provide

various different outputs; however, some specific items of the output can be considered of crucial

importance and be characterized as KPIs.

More complex KPIs can be potentially defined by combining previous ones, but there is a need to define a

common format for them as data entity. PIXEL has followed the FIWARE Data model, which specification can

be accessed here. Some extensions have been added, when needed, to particularize it to port and model needs

(e.g. environmental KPIs for the PEI calculation). You can find more information on the main documentation

repository of PIXEL, clicking here, as there is a section dedicated to Data Models.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 47 de 77

Figure 17. Key Performance Indicators

5.1.4. Event processing

According to Wikipedia a Event Processing is a method of tracking and analysing (processing) streams of

information (data) about things that happen (events), and deriving a conclusion from them. Complex event

processing, or CEP, consists of a set of concepts and techniques developed in the early 1990s for processing

real-time events and extracting information from event streams as they arrive. The goal of complex event

processing is to identify meaningful events (such as opportunities or threats) in real-time situations and respond

to them as quickly as possible.

Considering that the PIXEL platform uses as main database Elasticsearch, the selected and natural choice as

CEP engine refers to ElastAlert. You can find detailed information about ElastAlert by clicking here. Some of

its main features are reliability, modularity and easiness to set up and configure.

From the perspective of the Operational Tools, and considering the current needs of the target ports, this will

mainly be related to monitored KPIs where some thresholds are reached. For these situations, rules and alerts

are 'templatized' to facilitate the configuration to port operators and define proper actions. More complex actions

are possible and supported through ElastAlert; this will be commented in the Developer's Guide subsection,

explaining possible extensions.

Figure 18. Operational Tools- Event Processing overview

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 48 de 77

5.2. Developer’s guide

5.2.1. Identification of interfaces

As commented in the previous section, the OT interacts mainly with 3 external entities, as shown in the Figure

below:

 Interface 1: This is the interface used by the Operational Tools to obtain information (e.g. eKPIs) from

the Information Hub. Here the OT act mainly as user. Therefore, this interface will not be explained in

this section, but in the Information Hub chapter as part of the PIXEL documentation.

 Interface 2: This is the main interface used, typically by the Dashboard, to publish and execute models,

instances and scheduledInstances, as well as manage KPIs. This interface is developed as part of the

Operational Tools and will be described below as Management Interface.

 Interface 3: The Operational Tools are somehow divided into a main component, being part of the

PIXEL architecture, and also a OT adaptor integrated in each of the models and predictive algorithms

to allow its integration and management inside the platform. This interface is developed as part of the

Operational Tools and will be described below as Execution Interface.

Figure 19. Operational Tools- Identification of interfaces

The Figure below depicts these 3 interfaces from the point of view of the internal blocks of the main components

of the Operational Tools. As can be observed, the PIXEL Dashboard will invoke Interface 2 to manage the

publication and execution of models. The Engine block of the OT, whenever a model or predictive algorithm

needs to be executed, invokes the corresponding Docker instance, which incorporates an OT adaptor component

able to understand the exchange of parameters through the Interface 3. The Interface 1 refers to the use of the

Information Hub API to retrieve information. Storage of information as output of the execution of models and

predictive algorithms is done by the Docker instance by means of the OT adaptor.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 49 de 77

Figure 20. Operational Tools – Link interfaces and internal components

5.2.2. Management interface

This specification is intended for service consumers (with development skills). It provides a full specification

of how to interoperate with the OT Management Service API.

The API user should be familiar with: - RESTful web services - HTTP/1.1. - JSON data serialization formats.

Users can perform the following actions through the CRUD (Create, Read, Update, Delete) API: - Manage

models (both PIXEL models and predictive algorithms) - Manage instances (executions of models and

predictive algorithms) - Manage scheduled instances (scheduled executions of models and predictive

algorithms) - Manage KPIs (following the FIWARE KPI data format)

All endpoints require authentication. The Authorization HTTP header can be specified with ApiKey <your-

key> to authenticate as a user and have the same permissions that the user itself. Example:

GET / HTTP/1.1

Host: ot_host

Authorization: ApiKey <your-key>

Once the OT main component is deployed, it provides an Swagger (OpenAPI) endpoint under the path

http://<your_server>:8080/otpixel/doc/#/ where you have a Swagger UI to test the API

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 50 de 77

Figure 21. Operational Tools – Management Swagger API

A complete list of all methods is available as a standalone HTML page (https://docs-hub-

ot.readthedocs.io/en/latest/ot-api.html), containing examples of code for various programming languages (Java,

JS, PHP, C#, Python, etc.). One can also see the different fields of the data formats as well as the response

codes.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 51 de 77

Figure 22. Operational Tools- Management APIs with code samples

Exploiting the potential of Swagger (OpenAPI) specifications, the OT management API has also been ported to

apiary (https://pixelot.docs.apiary.io/#). Note that there is no proper real backend server to test the data, but you

can see the functions as well as the JSON datatypes.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 52 de 77

Figure 23. Operational Tools- Management API ported to Apiary

5.2.3. Execution interface

The OT Engine block is able to run Dockerized models and predictive algorithms if they include an specific

OT adaptor to allow the integration. The execution flow is depicted in the Figure below, where several steps

can be identified:

 Step 1: the main OT component launches the model via instantiating the corresponding Docker and

passing an instance JSON file with all needed parameters.

 Step 2: The controller manages the whole internal execution of the model inside the Docker container

following several steps. In step 2 it gets all inputs via the Input retriever module. This module should

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 53 de 77

be able to use both the Extractor and the Broker (Kafka) API of the Information Hub to obtain all

needed data.

 Step 3: If there is a need to transform the input data, the Input Transformer is invoked. This might

happen when the input data formats are not natively supported by the model itself, and some

adaptation is needed.

 Step 4: The model algorithm is launched passing all the obtained inputs from the Information Hub.

The controller shall monitor stdout, stderr to check whether the execution is going well or some errors

appear.

 Step 5: If there is a need to transform the output data, the Output Transformer is invoked. The

required transformations (if any) are mainly conditioned by latter efficient queries (e.g. visualization

in the Dashboard).

 Step 6: The resulting (transformed) output is written in the IH via the Output writer. This module

should be able to use the Extractor and/or the Broker (Kafka) API.

Figure 24. Operational Tools- Execution interface overview

The controller includes a logging functionality in order to monitor all steps. It should log: start, end (with

status), and any intermediate information during the process (if any). The latter might be conditioned

(level of logging) by some (possible) input verbose parameter.

In case of error, a typical logging table after an execution will look like

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 54 de 77

Table 3. Logging format example for model execution (error)

Timestamp id_model (UUID) id_execution

(UUID)

type (String) message (String)

2020-04-

16T18:51:17+00:00

JJUSG676531 JJH6757423 start -

2020-04-

16T18:51:19+00:00

JJUSG676531 JJH6757423 error error message 1

2020-04-

16T18:51:20+00:00

JJUSG676531 JJH6757423 error error message 2

2020-04-

16T18:51:21+00:00

JJUSG676531 JJH6757423 end error

In case of success, a typical logging table after an execution will look like

Table 4. Logging format example for model execution (success)

Timestamp id_model (UUID) id_execution

(UUID)

type (String) message (String)

2020-04-

16T18:51:17+00:00

JJUSG676531 JJH6757423 start -

2020-04-

16T18:51:19+00:00

JJUSG676531 JJH6757423 info info message 1

2020-04-

16T18:51:20+00:00

JJUSG676531 JJH6757423 info info message 2

2020-04-

16T18:51:21+00:00

JJUSG676531 JJH6757423 end success

5.2.4. Software Extensions

There are several potential extensions to be added to the existing implementation of the Operational Tools.

Some of them are commented below

5.2.4.1. Include an additional resource in the Management API

There are several potential extensions to be added to the existing implementation of the Operational Tools. One

of these consists in extending the API to include a new resource in its Management API, in case you need it to

your specific needs. In this case, and assuming that you have already imported the code from github, you should

follow these steps:

1. Add POJO class: Add new POJO class that represents the new resource in Java resources

eu.pixel.otpixel.model. It is advisable that the class extends the utility class

eu.pixel.otpixel.model.IdentifiableObject. For example, just copy Model.java into YourClass.java and

adapt it accordingly, then generate Setters/Getters with Eclipse.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 55 de 77

2. Create provide: Create a new provider interface in the package

eu.pixel.otpixel.datasource.dao.providers with methods to interact with the new resource. If you want

to add CRUD capabilities to the interface it is easier if the interface extends the utility interface

eu.pixel.otpixel.datasource.dao.CRUD<T> where T is your new POJO resource class. Then you can

add specific methods to that interface (see eu.pixel.otpixel.datasource.dao.providers.ModelProvider).

For example, copy ModelProvider.java into YourClassProvider.java and change the basics to have

something like

import eu.pixel.otpixel.model.YourClass;

public interface YourClassProvider extends CRUD<YourClass>{..}

3. Modify interface: Modify the interface eu.pixel.otpixel.datasource.DataSource and add a method that

forces the DataSource provider implementations to return an implementation of your provider interface

created in the previous step. Eclipse will complain at this moment. Don't worry, keep on with the

following steps and the problem will be solved (just an issue about dependencies)

public YourClassProvider getYourClassProvider();

4. 4Modify DataSource interfaces: After you modify the DataSource interface all the existing

implementations will fail to compile. You should modify all DataSource implementations (MongoDB,

Memory) since they have to return a specific implementation for that kind of Datasource of your

provider interface. For example, to return a MongoDB implementation of that provider, create a new

class in eu.pixel.otpixel.datasource.impl.mongodb that implements your provider interface. You will

have to implement all the methods of that interface. In this case, if your provider interface extended

eu.pixel.otpixel.datasource.dao.CRUD<T> it would be easier if this MongoDB provider class extended

the utility class eu.pixel.otpixel.datasource.impl.mongodb.AbstractMongoDBCRUDProvider (see

eu.pixel.otpixel.datasource.impl.mongodb.MongoDBModelProvider). For example, copy

MongoDBModelProvider.java into MongoDBYourClassProvider.java and change the import and

classes from Model to Yourclass. Adapt also MongoDBDataSource.java to include

MongoDBYourClassProvider. You have to do the previous step in all different DataSource

implementations (also for memory). Once you create your provider implementation you have to modify

all DataSource implementations to return your provider implementation (in this case would be

eu.pixel.otpixel.datasource.impl.mongodb.MongoDBDataSource).

5. Create resource: Once the DAO (Database Access Objects) are all well-defined and the project compiles

again, create a new API resource access class in eu.pixel.otpixel.api.resources. You should follow

REST compliance guidelines for that and keep consistency throught the project. To ensure that, the

most easiest approach is to copy an already existing class such as

eu.pixel.otpixel.api.resources.ModelResource and modify it for your new resource

6. Create converters: There is still something to add: the converters, for MongoDB implementation it is

located at eu.pixel.otpixel.datasource.impl.mongodb.converters. First add the converter, similar to

eu.pixel.otpixel.datasource.impl.mongodb.converters.ModelConverter.java, and then add a new

method to eu.pixel.otpixel.datasource.impl.mongodb.converters.MongoDBConverters.java. For

example, create eu.pixel.otpixel.datasource.impl.mongodb.converters.YourClassConverter.java from

eu.pixel.otpixel.datasource.impl.mongodb.converters.ModelConverter.java and adapt it accordingly.

Then add a new method in

eu.pixel.otpixel.datasource.impl.mongodb.converters.MongoDBConverters.java in the static list of

methods:

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 56 de 77

static{

converters.put(YourClass.class, new YourclassConverter());

}

5.2.4.2. Enhance the Dockerized model

There are several ways in which you may enhance the provided Dockerized models and/or predictive

algorithms, or just add new functionalities to your newly created ones. Some examples will be:

 Add new connector: currently all models are obtaining the information via the Information Hub, which

stores all needed information under a common place. This requires that all needed information to be

placed in the Information Hub via NGSI Agents and a connected Data Acquisition Layer (DAL).

However, for a certain model, you are able to add a new connector able to retrieve directly opendata

from external data sources. In that case, it is the Input Retriever component who is in charge of

implementing this functionality. From the point of view of the Dashboard and the OT main component

it should be a seamless upgrade, as long as the connector is well defined in the GetInfo.json and

instance.json files.

The connector is defined in the GetInfo.json file. A possible example will be something like

"supportExecAsync": true,

"type": "model",

"category": "environment",

"system": {

 "connectors": [{

 "type": "opendata-api",

 "description": "this connector allows connecting to Opendata repo X",

 "options": [{

 "name": "url",

 "type": "string",

 "description": "url",

 "required": true

 }, {

 "name": "reqParams",

 "type": "string",

 "description": "request parameters (if any)",

 "required": false

 }, {

 "name": "headers",

 "type": "headersObject",

 "description": "necessary headers (if any)",

 "required": false

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 57 de 77

 }

] }

]

},

 Add verbosity level: Typically, the model implementation has a way to log and trace the execution of

the model, with some log4j or similar functionality to store such information into a file. However, this

is stored inside the Docker container and is lost once the execution finishes. Currently Dockerized

models are mainly logging start and end of execution, without any intermediate trace being mandatory

(only errors). However, you could add additional levels in the in the verbose option field of the logging

element. For example, the GetInfo.json file could look like

"logging": [{

 "name": "your-name",

 "supportedConnectors": ["ih-api"],

 "type": "default-logging-format,

 "description": "",

 "required": true,

 "options": [{

 "name": "verbose",

 "type": "string",

 "description": "verbosity level (error, warning, info, debug)",

 "required": false

 },

 {…}

]

 }]

5.2.5. Compilation from the sources

5.2.5.1. Development environment

The following requirements apply to this software component (Java part):

 JDK 1.8+: you should be able to compile the code both in Linux and Windows environments.

 Eclipse IDE 2019: download and import the project into this IDE and (if not already) convert if into a

Maven project.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 58 de 77

 Apache Tomcat8: the software component is compiled as a WAR file to be deployed on a Tomcat8

server (tested SO: Ubuntu 18.04 LTS with OpenJDK 1.8).

 Mongo database: the WAR application makes use of Mongo to store/persist information. It is supposed

to be located on the same server as Tomcat 8; otherwise, change the configuration files accordingly.

The following requirements apply to this software component (Javascript part for the UI):

 Nodejs: v10.16.0

 npm: v6.9.0

 VUE: v3.9.2

5.2.5.2. Configuration

Before compiling, you will have to create various configuration files from the given templates:

 build.local.properties: It should server as template to create a file build.properties with the

configuration parameters of your project. You can leave everything as it is and just change localhost

with your server's IP or hostname.

#BUILD CONFIGURATION

jdk.version: 1.8
#put the same war.name as webapp.path to avoid possible conflicts
war.name: otpixel

#APP CONFIGURATION
webapp.name: OTPIXEL
webapp.path: /otpixel
webapp.appclass: eu.pixel.otpixel.App
webapp.api.package: eu.pixel.otpixel.api
webapp.api.path: /api

#KONGCHEN CONFIGURATION
webapp.kongchen.scheme: http
#change 'localhost' with your server's name
webapp.kongchen.host: localhost:8080
webapp.kongchen.basePath: /otpixel/api

 server.local.properties: It should server as template to create a file server.properties with the

configuration parameters of your project. Here you can set the credentials for accessing your Tomcat8

server for deployment purposes. Please ensure that your Tomcat8 server is able to allow such operation

(set up tomcat-user.xml properly if not).

server.scheme: http
change parameters (Server's name/IP, usr, pass) to accommodate to your server
server.host: localhost:8080
tomcat.username: tomcat
tomcat.password: s3cret

 log4j.xml: Located under Java Resources --> resources. Configuration file for Log4j. You may adapt it

to your needs (on single log file, or many).

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 59 de 77

 default.local.configuration.xml: Located under Java Resources --> resources. It should serve as

template to create a file default.configuration with the configuration parameters of your project. You

will have to set here your apiKey, your Elastic configuration and your Mongo (database) configuration

mainly.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE xml>
<configuration>
 <server>
 <headers>
 <header enabled="true" key="Access-Control-Allow-Origin" value="*" />
 <header enabled="true" key="Access-Control-Allow-Headers" value="origin,
content-type, accept, authorization" />
 <header enabled="true" key="Access-Control-Allow-Credentials" value="true" />
 <header enabled="true" key="Access-Control-Allow-Methods" value="GET, POST,
PUT, DELETE, OPTIONS, HEAD" />
 </headers>
 </server>

 <!-- API key when invoking the Swagger API. Change it according to your test
environment -->
 <security>
 <apikey>apikey</apikey>
 </security>

 <!-- Elastic server configuration. Change it according to your test environment --
>
 <elastic>
 <host>localhost</host>
 <port>9200</port>
 <scheme>http</scheme>
 <username>username</username>
 <password>password</password>
 </elastic>

 <!-- Frequency (in seconds) to search for new models added to the platform -->
 <ot-engine>
 <frequency>30</frequency>
 </ot-engine>

 <datasource>
 <className>eu.pixel.otpixel.datasource.impl.mongodb.MongoDBDataSource</className>
 <!-- <uri>mongodb://mongo:27017/otpixel</uri> this could be used in docker-
compose with mongo as a docker instance-->
 <uri>mongodb://localhost:27017/otpixel</uri>
 </datasource>

</configuration>

Additionally, for the UI, which is developed in Vue (javascript), you will need to configure the following:

 settings.local.js: Located under extra --> ui --> cfg. It should server as template to create a file

settings.js with the configuration parameters of your project. Just change localhost with your server's

IP or network hostname.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 60 de 77

(function(window) {
 window.__env = window.__env || {};

 window.__env.otpixelapi = {
 "endpoint": "http://localhost:8080/otpixel/api",
 "apiKey": "apikey"
 };

 window.__env.debug = true;
})(this);

5.2.5.3. Compilation

STEP 1: Compile the UI code

If you don't need nor want to compile it, there is already a precompiled version under the folder 'www/ui'. In

this case, just adapt the configuration file:

 settings.local.js: Located under www --> ui --> cfg. It should serve as template to create a file settings.js

with the configuration parameters of your project.

If you want to compile the UI, just open a command line window on the location of the code (extra/ui) and type

npm install

npm run build

If everything goes well (several warnings might appear) then just replace the content of the 'www/ui' of your

Eclipse project with the content of the 'dist' folder you have just compiled.

STEP 2: Compile the WAR application

In order to package the program into a WAR file, just right click on the pom.xml file --> Run As --> maven

build:

The goal should be mvn clean compile tomcat7:redeploy

If you have configured the files properly, the code should be compiled and uploaded directly to your Tomcat

server. The process will also generate a Swagger environment to test the backend. Open a browser and check if

it works:

http://<your_tomcat_server>:8080/otpixel/ui (vue UI)

http://<your_tomcat_server>:8080/otpixel/doc (Swagger UI to test backend API)

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 61 de 77

6. PIXEL Dashboard and Notification

6.1. Overview
The Dashboard & Notifications is the component that has the capability of representing data stored in the IH

through meaningful combined visualizations in real time. It also provides the capability to send notifications

based on the status of the data received from sensors. Finally, this module provides (aggregates and

homogenises) all the UIs for the different functional blocks (e.g. Operational Tools). The Dashboard

component is divided in two subcomponents:

 Frontend: It offers a web application based on the VueJS Framework. This component exposes the UI

through which the user interacts.

 Backend: It exposes all the services needed for the dashboard. Moreover, it connects to IdM (identity

management service) to ensure users are authorized. It has a non-relational database and communicates

with the PIXEL Operational Tools for the management of the containers. The Backend also has a

component responsible of alerts.

o Backend of alerts: It has a service that exposes a REST API to create different types of alerts.

Once launched they are sent directly to the backend. It requires connection to the PIXEL

Information Hub.

The Dashboard has a Proxy whose functionality is to maintain a single entry point to the dashboard. There are

redirects for all the PIXEL components. All the services must be exposed through this component.

Figure 25: Dashboard diagram

The functional overview of the different options that the Dashboard has are:

 Overview: Section where the visualizations created by the end-user (and published) are shown. In this

way, they are accessible as soon as the user accesses to the platform.

 Views: Component responsible for creating the different types of visualizations (Gant diagram, Table,

etc.) of the data coming from the sensors.

 Dashboard: UI responsible for creating dashboards using visualizations created in the previous section.

 Permission: Component aligned with the PIXEL Security & Privacy module in order to fulfil all

required security policies (e.g. authorization, authentication, roles, permission, etc.).

 PAS Information: UI to fill in the different entities (resources, rules and supply chain) needed as input

for the PAS Model (Port Activity Scenario).

 Map: Component that will show geolocated data (sensors, devices, etc.) from the different ports.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 62 de 77

 Alerts: Component responsible for real-time monitoring of data and triggering of alerts depending on

their value.

 Operational Tools: User interface to access the functionalities of the Operational Tools.

Figure 26: Dashboard menu options

6.2. Developer’s guide

6.2.1. Introduction

For the development of the Dashboard & Notifications component of PIXEL it has been necessary to create two

solutions:

1. Client solution. Main component of this module and accessible via web to show the results obtained in

the platform. It has been developed in Element UI (Open source framework based on Vue.JS). There

is a complete guide of how to develop with this framework here. The next picture depicts the more

important features of this solution.

Figure 27: Dashboard features (client solution)

2. Server solution. REST API created to interact from the client solution with the different entities needed

in certain processes (Visualizations, Dashboard, Alerts, etc.). It is a CRUD API from which access to

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 63 de 77

the No-SQL DB that is being used (MongoDB) are made. This API follows the MVC pattern. The

element View would be the view of the client solution itself. Within the API there will be only Model

and Controller. It has been developed in Node.JS.

6.2.2. Folder structure (Client solution)

The folder structure is marked by the chosen framework (Element UI). The following picture depicts the folders

and a brief description of their functionality.

Figure 28: Folder structure

6.2.3. Add new views

If you want to add a new view to the platform the developer has to create the view inside the views folder (see

next figure), creating its container folder (alerts will be the container folder for the views related with this

functionality).

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 64 de 77

Figure 29: Example of views inside its container folder

Once the view has been created it is time to add the view to the file responsible for managing the routes in the

platform (router/index.js).

In this file, in addition to the paths for the different menu entries, it is configured:

 Navigability between views. Even if the views don’t have a menu entry.

 Icons of the views that have menu entry.

 Nesting of views within the same menu entry.

The next figure depicts the configuration in the index.js for the Map menu entry.

Figure 30: Example of how to fulfil a menu entry in index.js file

6.2.4. Internationalization

The PIXEL platform has the i18n configurations necessary to give support for the following languages:

 English

 Spanish

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 65 de 77

 French

 Italian

 Greek

The solution includes a folder called lang where the files for each supported language are located. To identify

these languages, they are called according to their ISO Language Codes.

Figure 31: Files used to translate PIXEL (called attending to their ISO Language Codes)

The entries in these files are structured in regions according to the functionality to which the tag to be translated

belongs. The figure below depicts the entries within the region alerts for the English file (en.js, according to the

nomenclature mentioned above).

Figure 32: English translations for alerts functionality

If PIXEL must support a new language, the developer should go to the index.js file (in the language folder)

and generate the necessary files (according to the content of index.js file). Finally, it will be necessary to create

a JavaScript file named with the ISO Code for the new language.

The syntax of the tag to be created will be different depending on its location within the view:

 HTML Code. The next figure illustrates the syntax of the label in this case. This is the title tag within

the widget region.

Figure 33: Syntax, HTML Code

 JavaScript Code. Syntax is different in this case (see next figure). It is necessary to use the ‘$t’ method

that injects the necessary code to translate the tags by going to the corresponding file and region to

retrieve the text of the tag.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 66 de 77

Figure 34: Syntax, JavaScript Code

6.2.5. Notifications

The PIXEL Dashboard & Notifications module includes two options to show notifications or messages to the

end-user (without the need to build a custom popup or modal dialog).

1. Message: Method used to notify a message to the end-user. For example, the result of a validation.

There are several levels of notifications: warning, error or successful. It is also possible to indicate

the time interval during which the message will be visible. The syntax of this type of notification is

depicted in the next figure.

Figure 35: Message syntax

The previous figure will show a popup notifying that the delete action has been successful.

The next picture illustrates the appearance of this type of message. In that case, the result of a validation:

a warning message.

Figure 36: Message appearance

2. Notification: Method used to show the result of an action (entity created, updated, etc.). There are

different levels of messages depending on the result or priority of the action: warning, successful, error.

The syntax of this type of message is depicted in the next figure.

Figure 37: Notification Syntax

 The previous figure will show a popup notifying that the entity has been created successfully (see example

below).

Figure 38: Notification appearance

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 67 de 77

6.2.6. Access to APIs

The Dashboard interacts with the APIs of other components (as well as with the API of the server solution).

These requests are not made directly from the corresponding view where necessary.

There is a folder called API containing a JavaScript file for each of the entities or functionalities accessed via

API.

Figure 39: Content of the API folder

For example:

 otools.js. This is the file where the PIXEL Operational Tools API endpoints will be located.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 68 de 77

Figure 40: OTools endpoints

 dataextractor_ih.js. This file centralises all the IH dataextractor API endpoints.

Figure 41: dataextractor API endpoints

 PAS_IH.js. It contains the necessary methods to complete the PAS (Port Activity Scenario) forms. This

information is stored in the PIXEL Information Hub and in this case there is no specific API. Queries

are performed directly using the Elasticsearch REST API.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 69 de 77

Figure 42: Elasticsearch endpoints

 resource.js. It contains the endpoints exposed by the CRUD API created in the server solution.

Figure 43: Endpoints for resource entity

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 70 de 77

Each of these files has in common the import that is made in the first line. This imports the request class

that will be used for each set of endpoints.

This request class contains:

o Base url: Used in the request for each endpoint.

o Timeout configuration: Can be different for each API.

o Construction of the response: Object for each request.

The next picture depicts an example of request class (for the Operational Tools endpoints in this case).

Figure 44: Request class for Operational Tools endpoints

6.2.7. Add a new entity to the server solution

The server solution has been developed following the MVC pattern (Model-View-Controller). Therefore, this

pattern will be followed in the case of adding a new entity that will interact with the Dashboard.

The next figure depicts the folder structure of the server solution.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 71 de 77

Figure 45: Structure of server solution

Among these folders, the following stand out:

 controllers. There will be controllers for each entity. API entry point. It is where the redirection of the

method exposed to the internal method of our API is done. It makes use of the service classes.

Figure 46: Controller file

 services. It performs the queries against the database for this purpose makes use of the models.

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 72 de 77

Figure 47: Service file

 models. It is in these classes that the object to be used for our entity will be defined (properties, relations

with other entities, etc.).

Figure 48: Example of model

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 73 de 77

There is a configuration file (index.js) where the developer must add a few lines for each of the entities to be

exposed. These lines are related to the controller of the entity. This is because the access point to the API is

through the controller.

This file is formed by two blocks:

 First block. Where the import of the controller’s entity is done.

Figure 49: Section for the import of the controller's entity

 Second block. Where the path of the entity of that controller is indicated.

Figure 50: Section responsible for the routing of the controllers

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 74 de 77

6.2.8. Add new visualizations

The src/components folder contains the various components of the dashboard client solution.

Among them, the widget folder stands out. This is where the different widgets/visualizations used to represent

the information within the PIXEL Platform are created (displays associated with the execution of a model).

Therefore, in case you want to add a new type of visualization, this is where it should be done.

Currently, this folder is structured in the following subfolders:

 Amcharts: Visualizations created using this JavaScript library.

 Echart: Visualizations created using this JavaScript library.

 Custom: Customs visualizations without the specific use of any JavaScript library.

 Mixins: Folder with files that help representing the visualizations. In this case, the file responsible for

resizing them (resize.js).

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 75 de 77

7. PIXEL Security

7.1. Overview
The main function of the security layer is to secure the access to the API of the other components from outside

the platform and to provide a solution for identity management.

Figure 51. . Operational Tools - Architecture overview

The security layer not only secures the access to the NGSI Agents that exposed an API in the Data Acquisition

Layer, but it also provides security to the dashboard UI to access the PIXEL’s API (Dashboard, Information

Hub and Operational Tools). We rely on the FIWARE architecture and solution to implement those features in

PIXEL, using the FIWARE Generic Enablers:

 KeyRock: The Identity Manager

 Wilma (PEP Proxy): The OAuth2 proxy that check the access

 AuthzForce: An XACML authorization solution

Figure 52. PIXEL security scheme

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 76 de 77

7.2. (REST) API
Wilma and AuthZForce interact directly with KeyRock to ensure that the access token provided by the user is

granted with enough permissions to access the request URI. The PIXEL components have no need to access

directly those components.

 AuthZForce provides a SOAP API

 Wilma doesn’t provide an API and consumes AuthZForce and Keyrock ones.

7.2.1. Paths

The complete Identity Management API for KeyRock is fully documented by FIWARE and allows managing

all the objects of the Identity Management models:

 Authentication.

 Manage Applications.

 Manage Users.

 Manage Organizations.

 Manage Roles.

 Manage Permissions.

 Manage IoT Agents.

 Manage Pep Proxies.

KeyRock also implements the standard OAuth2 protocol. The different API usages are documented by

FIWARE. Those APIs provide all the solution needed to generate a valid X-AuthToken to request an URI

access.

In PIXEL most of the tokens are requested using the Resource Owner Password Credentials Grant method.

7.2.2. Models

The full API models are implemented in the MySQL Database that helps to show the relation between the

different Identity Management objects.

A complete database structure is available on github.

The main objects are:

 User: It has credentials, and can be assigned to Organization and Application.

 Organization: It represents a user’s group. It can be assigned to Application.

 Application: We can assign one PEP Proxy to protect a backend. Users and Organizations have assigned

Roles in the context of the application.

 Roles: A set of Permissions

 Permission: Defines an allowed request on an Application

https://github.com/authzforce/rest-api-model/blob/release-5.3.1/src/main/resources/authz-api.wadl
https://fiware-idm.readthedocs.io/en/latest/oauth/oauth_documentation/index.html
https://fiware-idm.readthedocs.io/en/latest/oauth/oauth_documentation/index.html
https://github.com/ging/fiware-idm/blob/master/doc/resources/database_structure.png

D6.5 – APIs and documentation for software extension

Version v1.0 - PIXEL © - Page 77 de 77

Figure 53. Related models for managing permissions

7.3. Developer’s guide
The Security Layer relies on FIWARE components that are all Open Source, fully documented with an existing

community managing them. It’s always possible (as in any open source project) to propose evolution and

corrections.

 Keyrock : https://github.com/ging/fiware-idm

 Wilma : https://github.com/ging/fiware-pep-proxy

 AuthZForce : https://github.com/authzforce/core

7.3.1. Potential extensions

The current version of KeyRock uses a MySQL Database to manage the objects. An evolution could be to

propose a different driver database to allow KeyRock to work with an external IdM solution like LDAP to be

more closely integrated in the port IT solution.

7.3.2. Additional notes

FIWARE propose documentation to easily integrate their solutions:

 KeyRock documentation guide : https://fiware-idm.readthedocs.io/en/latest/index.html

 Tutorials : https://github.com/FIWARE/tutorials.Identity-Management

https://github.com/ging/fiware-idm
https://github.com/ging/fiware-pep-proxy
https://github.com/authzforce/core
https://fiware-idm.readthedocs.io/en/latest/index.html
https://github.com/FIWARE/tutorials.Identity-Management

