

D6.4 PIXEL data acquisition, information

hub and data representation v2

Deliverable No. D.6.4 Due Date 30/06/2020

Type Other Dissemination Level Public

Version 1.0 Status Final

Description Deliverable D6.4 is the second version of the “PIXEL data acquisition, infor-

mation hub and data representation” deliverable. Both deliverables are the main

asset of software documentation for this project, including data sources, collecting

mechanisms, technologies, protocols, the operational analytics engine, operational

tools and the visualization and notification module.

This version contains the design of integrated information system, requirements of

the platform, installation, and user guide.

Work Package WP6

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 2 of 126

Authors
Name Partner e-mail

José A. Clemente Pérez P02 PRO jclemente@prodevelop.es

Julian Martinez Montes P02 PRO jmartinez@prodevelop.es

Miguel Ángel Llorente P02 PRO mllorente@prodevelop.es

Ismael Torres P02 PRO itorres@prodevelop.es

Benjamin Molina P01 UPV benmomo@upvnet.upv.es

Flavio Fuart P03 XLAB Flavio.fuart@xlab.si

Damjan Murn P03 XLAB Damjan.murn@xlab.si

Dejan Štepec P03 XLAB dejan.stepec@xlab.si

Tomaž Martinčič P03 XLAB Tomaz.martincic@xlab.si

Marc Despland P06 ORANGE marc.despland@orange.com

History
Date Version Change

10-May-2020 0.1 ToC and task assignments

15-May-2020 0.2 ToC update

15-June-2020 0.3 Merge contributions

17-June-2020 0.4 Software contributions

19-June-2020 0.9 Internal review

25-June-2020 0.9.1 Update Security section

29-June-2020 1.0 Ready for submit

Key Data
Keywords ICT framework, data acquisition, cybersecurity, operational tools,

visualisation, dashboards, User Manual, PIXEL Platform

Lead Editor Jose A. Clemente, P02 PRO

Internal Reviewer(s) P12 ASPM, P07 CREOCEAN

mailto:mllorente@prodevelop.es
mailto:itorres@prodevelop.es

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 3 of 126

Abstract

PIXEL Enabling ICT Infrastructure framework is one of the key outcomes of PIXEL activities. The main goal

is to compose a complete data-centric port solution, allowing data-level interoperability of different systems,

including legacy industrial and port operations systems.

This framework provides solid technological foundations for efficient and cost effective execution of models,

simulations and predictions that are part of the PIXEL environmental impacts assessment model, to be used by

ports of the future for efficient management and tackling environmental issues.

The most important asset of this deliverable is the provision of software, installation and user guide for the

data acquisition layer, information hub, operational tools, dashboard & notifications and security & privacy

modules. PIXEL Data acquisition provides software mechanisms to enable appropriate data acquisition in

different port areas, from logistic agents and public data sources. Data acquisition is based on FIWARE, a

curated framework of open source platform components for smart solutions, financed through several EU

research programmes. PIXEL Information Hub is the primary information source in all port related activi-

ties and is being designed to strengthen the capacity and accuracy of port of the future logistics processes and

to maintain a high level of service and offer a system which will is in line with the needs and expectations of

users. PIXEL Operational tools enable model-based simulations and analysis of data gathered and fused in

the PIXEL Information Hub to provide more flexible operations and create decision-making tools, resulting

from other PIXEL activities. PIXEL Integrated Dashboard and Notifications provide the visual environ-

ment to show in a single dashboard the different KPIs, user interfaces for the operational tools and the config-

uration and management tools needed to control other PIXEL framework components. PIXEL Security and

Privacy is a transversal activity that provides end-to-end security for the PIXEL platform by deploying basic

cybersecurity mechanisms for all other ICT components.

PIXEL Enabling ICT Infrastructure framework has been designed to support generalization to other ports or

terminals with similar needs.

Statement of originality
This document contains material, which is the copyright of certain PIXEL consortium parties, and may not be

reproduced or copied without permission. This deliverable contains original unpublished work except where

clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has

been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the PIXEL

consortium (including the Commission Services) and may not be disclosed except in accordance with the

consortium agreement.

The commercial use of any information contained in this document may require a license from the proprietor

of that information.

Neither the project consortium as a whole nor a certain party of the consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Innovation and Networks Executive Agency

(INEA) is not responsible for any use that may be made of the information it contains.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 4 of 126

Table of contents

Table of contents ... 4

List of tables .. 6

List of figures .. 7

List of acronyms .. 10

1. About this document .. 11

1.1. Deliverable context .. 11

1.2. The rationale behind the structure .. 12

1.3. Version-specific notes .. 13

2. Introduction ... 14

2.1. Relation with PIXEL objectives and use cases .. 14

2.2. Relation to requirements .. 14

3. PIXEL Platform Source Code ... 15

3.1. PIXEL Git repository ... 15

3.2. Software release and documentation .. 15

4. PIXEL platform description .. 16

4.1. Introduction .. 16

4.2. Installation Guide ... 17

4.2.1. Pre-requirements .. 17

4.2.1.1. Installation of docker and docker-compose ... 17

4.2.2. PIXEL Data acquisition ... 17

4.2.2.1. Summary.. 17

4.2.2.2. How to install .. 19

4.2.2.3. Configuration ... 19

4.2.2.4. Component status .. 21

4.2.2.5. Issues & Solution ... 21

4.2.3. PIXEL Information Hub .. 21

4.2.3.1. Summary.. 21

4.2.3.2. How to install .. 22

4.2.3.3. Configuration ... 28

4.2.3.4. Monitoring ... 29

4.2.3.5. Issues & Solution ... 32

4.2.4. PIXEL Operational Tools .. 33

4.2.4.1. Summary.. 33

4.2.4.2. How to install .. 37

4.2.4.3. Configuration ... 40

4.2.4.4. Issues & Solution ... 43

4.2.5. PIXEL Integrated Dashboard and Notifications .. 44

4.2.5.1. Summary.. 44

4.2.5.2. How to install .. 46

4.2.5.3. Configuration ... 47

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 5 of 126

4.2.5.4. Issues & Solution ... 47

4.2.6. PIXEL Security .. 48

4.2.6.1. Summary.. 48

4.2.6.2. How to install .. 49

4.2.6.3. Configuration ... 49

4.2.6.4. Component status .. 50

4.2.6.5. PIXEL specifics deployment ... 51

4.2.6.6. Issues & Solution ... 52

4.3. Pilots Installation .. 53

4.3.1. Architecture ... 54

4.3.2. How to install ... 55

4.3.2.1. Core Host ... 55

4.3.2.2. Public Host .. 56

4.4. User’s Guide .. 58

4.4.1. PIXEL Data acquisition ... 58

4.4.1.1. NGSI Agents ... 58

4.4.1.2. Quick start guide .. 59

4.4.2. PIXEL Information Hub .. 61

4.4.2.1. Importing Data Sources from DAL to Information Hub ... 61

4.4.2.2. Retrieving Data from Information Hub ... 67

4.4.2.3. Elasticsearch Proxy Service... 71

4.4.2.4. Information Hub Management Console .. 72

4.4.3. PIXEL Operational Tools .. 83

4.4.3.1. Backend Interface .. 83

4.4.3.2. Graphical User Interface .. 87

4.4.4. PIXEL Integrated Dashboard and Notifications .. 97

4.4.4.1. Login ... 98

4.4.4.2. Layout .. 98

4.4.4.3. Permission ... 102

4.4.4.4. Overview and Views ... 103

4.4.4.5. Dashboard – Reporting .. 108

4.4.4.6. PAS Information .. 109

4.4.4.7. Map .. 116

4.4.4.8. Operational Tools .. 116

4.4.5. PIXEL Security .. 120

4.4.5.1. OAuth2 mechanism ... 120

4.4.5.2. Authorizations ... 122

4.4.5.3. Data Tracking and Security ... 124

5. Conclusions and Future work .. 126

5.1. Conclusion ... 126

5.2. Future work .. 126

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 6 of 126

List of tables

Table 1: Deliverable context ... 11
Table 2: Software release overview... 15
Table 3: Installation of Docker and docker-compose .. 17
Table 4 Installation of DAL .. 19
Table 5: Environment variables per each service in docker-compose file .. 19
Table 6: How to check the status of each service once has been deployed ... 21
Table 7: Docker Compose deployment of Information Hub ... 23
Table 8: Docker Compose for Elasticsearch & Kibana ... 23
Table 9: Testing Orion Data Collector .. 29
Table 10: Testing Data Writer ... 30
Table 11: Testing Data Extractor... 30
Table 12: Testing Controller ... 31
Table 13: Testing Data Monitor .. 31
Table 14: Testing Orchestrator .. 31
Table 15: Testing Elasticsearch Proxy .. 32
Table 16: How to verify the Dashboard is correctly deployed .. 47
Table 17: Installation of Security Layer .. 49
Table 18: Environment variables for security layer .. 49
Table 19: How to check the status of the different services in the docker-compose file 50
Table 20: Issues related with Wilma ... 52
Table 21: Installation of the CORE Host... 55
Table 22: Installation of the PUBLIC Host ... 56
Table 23: Time parametrization options supported by the OT engine ... 94
Table 24: Dashboard Functionalities summary ... 101
Table 25: OAuth2 mechanism ... 120

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 7 of 126

List of figures

Figure 1: Global architecture of PIXEL .. 16
Figure 2: Purpose of Data Acquisition Layer .. 18
Figure 3: Interaction of DAL with the rest of PIXEL components ... 18
Figure 4: PIXEL Information Hub architecture .. 22
Figure 5: Information-hub-docker ... 23
Figure 6: Checking elasticsearch is running .. 24
Figure 7: Environmental variables .. 25
Figure 8: Properties of infhub.properties configuration file .. 25
Figure 9: Logging configuration for Information Hub .. 26
Figure 10: Starting Information Hub ... 26
Figure 11: Checking state of Information Hub .. 27
Figure 12: AIS Data Collector settings.. 27
Figure 13: Checking state of AIS Data Collector .. 27
Figure 14: Information Hub Management Console ... 28
Figure 15: Information Hub settings ... 29
Figure 16: Checking state of Information Hub .. 29
Figure 17: Information Hub Management Console ... 32
Figure 18: Checking the logs ... 33
Figure 19: Viewing the last lines of Orion Collector logs ... 33
Figure 20: Operational Tools - Architecture overview ... 34
Figure 21: Operational Tools - Functional overview .. 35
Figure 22: Link between models and the Operational Tools ... 36
Figure 23: Key Performance Indicators... 36
Figure 24: Operational Tools- Event Processing overview ... 37
Figure 25: Installation and configuration files for the Operational Tools ... 38
Figure 26: OT- Default configuration file ... 38
Figure 27: OT- Settings UI configuration file ... 39
Figure 28: OT –Swagger configuration file .. 39
Figure 29: OT- Tomcat configuration for user deployment .. 39
Figure 30: Testing if Mongo is running... 40
Figure 31: Testing if Tomcat8 is running .. 41
Figure 32: Testing if the UI is running .. 42
Figure 33: Testing if a specific functionality is working ... 42
Figure 34: Testing the Swagger ... 43
Figure 35: OT log files .. 44
Figure 36: Purpose of PIXEL Security Layer ... 48
Figure 37: Diagram of PIXEL Security Layer .. 49
Figure 38: Wilma diagram ... 51
Figure 39: Parameters needed to install more than one Wilma ... 52
Figure 40: PIXEL Architecture diagram ... 54
Figure 41: Example of TideSensorObserved ... 61
Figure 42: Entity created by Data Acquisition Layer .. 62
Figure 43: Schema for the TideSensorObserved Data Model ... 62
Figure 44: Orion Type for the TideSensorObserved Data Model ... 63
Figure 45: SourceModelRelation entity for the Orion entity... 63
Figure 46: Elasticsearch indexes ... 64
Figure 47: Register stored in elasticsearch .. 65
Figure 48: Resulting data stored .. 66
Figure 49: Resulting data shown in Kibana... 66
Figure 50: List of sources with their attributes .. 67
Figure 51: Detailed information about a specific data source ... 67
Figure 52: List of all data source types in Information Hub.. 68

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 8 of 126

Figure 53: Retrieving Info about a Specific Source Type ... 69
Figure 54: Retrieving Time-Series Data .. 70
Figure 55: Latest data record for TideSensor .. 71
Figure 56: Call of Elasticsearch REST API using curl.. 72
Figure 57: Information Hub Operation Overview ... 73
Figure 58: System View .. 74
Figure 59: Instances View ... 75
Figure 60: Sources View ... 76
Figure 61: Management Console when Fields tab is selected ... 77
Figure 62: Management Console when Source is selected ... 78
Figure 63: Management Console when Monitoring is selected .. 79
Figure 64: Storage View .. 80
Figure 65: Extractions View .. 81
Figure 66: Notifications View ... 82
Figure 67: Settings View ... 83
Figure 68: OT Swagger UI authentication .. 84
Figure 69: OT Swagger UI (list models). Empty response ... 84
Figure 70: OT Swagger UI (create model) .. 85
Figure 71: OT Swagger UI (list models). Model example response ... 86
Figure 72: Add a Model (Step 1) ... 87
Figure 73: Add a new model (Step 2).. 87
Figure 74: OT GUI. Add a new model (Step 3) .. 88
Figure 75: Log4j file for monitoring the creation of models ... 88
Figure 76: OT GUI. Add a new model (Step 4) ... 89
Figure 77: OT GUI. Edit information from a published model ... 89
Figure 78: OT GUI. Create a new instance to run a model (Step I) .. 89
Figure 79: OT GUI. Create a new instance to run a model (Step 2) ... 90
Figure 80: OT GUI. Create a new instance to run a model (Step 3) ... 90
Figure 81: Log4j file for monitoring the creation of instances .. 91
Figure 82: OT GUI. Create a new instance to run a model (Step 4) ... 91
Figure 83: OT GUI. Create a new instance to run a model (Step 5) ... 92
Figure 84: OT GUI. Create a new scheduled instance to run a model .. 92
Figure 85: Log4j file for monitoring the creation of scheduled instances ... 93
Figure 86: OT GUI. Create a new scheduled instance to run a model (II) .. 93
Figure 87: OT GUI. Create a new KPI (Step 1). ... 95
Figure 88: OT GUI. Create a new KPI (Step 2). ... 95
Figure 89: OT GUI. Create a new KPI (Step 3). ... 96
Figure 90: OT GUI. Create a new KPI (Step 4). .. 96
Figure 91: OT GUI. Create a new KPI (Step 5). ... 97
Figure 92: Platform User Interface .. 98
Figure 93: Login page ... 98
Figure 94: Layout .. 99
Figure 95: Header components .. 99
Figure 96: Header configuration options ... 100
Figure 97: Extended /compact menu ... 100
Figure 98: Different content sections .. 101
Figure 99: List of roles .. 102
Figure 100: Create a New Role ... 102
Figure 101: List of users .. 103
Figure 102: Create new user .. 103
Figure 103: List of visualizations .. 104
Figure 104: Create Visualization - Step 1 ... 104
Figure 105: Create Visualization - Step 2 ... 105
Figure 106: Create Visualization - Step 3 ... 105
Figure 107: Create Visualization Process .. 106

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 9 of 126

Figure 108: Custom Visualizations ... 106
Figure 109: Overview Layout ... 107
Figure 110: Example of overview with 3 visualizations ... 107
Figure 111: Dashboard Management .. 108
Figure 112: Dashboard Creation ... 108
Figure 113: Dashboard Visualization .. 109
Figure 114: PAS inputs and outputs .. 109
Figure 115: Rules List ... 110
Figure 116: Create Cargoes Category ... 111
Figure 117: Create Shift Work .. 111
Figure 118: Add Priority ... 112
Figure 119: Resources List .. 112
Figure 120: Create Area .. 113
Figure 121: Create Machine ... 113
Figure 122: Supplier Chain List .. 114
Figure 123: Create Supply Chain Details .. 114
Figure 124: Create Supply Chain Steps ... 115
Figure 125: Create Supply Chain Compatibility ... 115
Figure 126: Index created .. 116
Figure 127: Map view with tide sensors .. 116
Figure 128: Models /algorithms execution and visualization .. 117
Figure 129: Models Management .. 117
Figure 130: Model Execution Schedule ... 118
Figure 131: Model Execution Result ... 118
Figure 132: Model runs ... 119
Figure 133: Predictive Algorithm management .. 119
Figure 134: KPI Management ... 120
Figure 135: Diagram of Authorization mechanism ... 123
Figure 136: Interactions among different components of Pixel Security Layer .. 124
Figure 137: Managing permissions on KeyRock .. 124

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 10 of 126

List of acronyms

Acronym Explanation

AIS Automatic Identification System

API Application Programming Interface

ARPA Agenzia regionale per la protezione ambientale

CPU Central Processing Unit

CRUD Create, Read, Update and Delete

CSV Comma-Separated Values

CURL Client URL

DAL Data Acquisition Layer

DOA Description of Action

ETD Estimated Time of Departure

FAIR Facility for Antiproton and Ion Research

GPMB Grand port maritime de Bordeaux

Gogs Go Git Service

GUI Graphic User Interface

HTTP Hypertext Transfer Protocol

ICT Information and communications technology

ID Identity

IDM Identity Manager (FIWARE)

IH Information Hub

IoT Internet of Things

IP Internet Protocol

IT Information Technology

JSON JavaScript Object Notation

KPI Key Performance Indicator

LTS Long Term Storage

MIME Multipurpose Internet Mail Extensions

MIT Massachusetts Institute of Technology

NGSI Next Generation Sensors Initiative

NMEA National Marine Electronics Association

OS Operating System

OT Operational Tools

PCS Port Community System

PA Predictive Algorithm

PAP Policy Administration Point

PAS Port Activity Scenario

PDP Policy Decission Point

PEI Port Environmental Index

PEP Policy Execution Point

PIXEL Port IoT for Environmental Leverage

PMS Port Management System

PMIS Port Management Information System

REST Representational state transfer

SILI Sistema Informativo Logistico Integrato

SotA State-of-the-Art

TCP Transmission Control Protocol

UI User Interface

UUID Universally Unique Identifier

WP Work Package

WSDL Web Services Description Language

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 11 of 126

1. About this document

This deliverable is the second version of the “PIXEL data acquisition, information hub and data

representation”, it describes and provides the work that has been done in the technical tasks of WP6, Enabling

ICT (Information and communications technology) infrastructure framework. The deliverable consists of:

• The reporting part (this document), where it is described the components developed including the

installation and user guide.

• The final version of the source code for software components.

This deliverable, together with 6.5, is intended to be useful guide when installing, starting up and using the

PIXEL platform in the different pilots, as well as to be able to expand it if needed

1.1. Deliverable context
Table 1: Deliverable context

Keywords Lead Editor

Objectives Objective 1: Enable the IoT-based connection of port resources, transport

agents and city sensor networks.

This deliverable provided the final software for IoT enablement and

interconnection of different data providers including Port information

systems, sensors and third parties’ providers like Marine traffic.

 Objective 2: Achieve an automatic aggregation, homogenization and

semantic annotation of multi-source heterogeneous data from different

internal and external actors.

This deliverable provides the implementation of the reference model

provided in D6.1. A lot of effort has been done in the Data acquisition

and Information Hub Components to provide a generic data aggregation

mechanism and homogenization.

Objective 3: Develop an operational management dashboard to enable a

quicker, more accurate and in-depth knowledge of port operations.

This deliverable provides the dashboard component that allows the users

to easily interact with the PIXEL platform, resulting from T6.4.

Objective 4: Model and simulate port operations processes for automated

optimisation.

D6.4 provides the operational tools component resulting from T6.5. This

component gives high-level technological support for the configuration

and execution of predictive algorithms models developed in WP4.

Objective 5: Develop predictive algorithms.

Similar as for Objective 4, D6.4 provides the operational tools component

resulting from T6.5. The Operational tools provide a generic framework

for the setup and execution of predictive algorithms.

Work plan This deliverable is the result of work performed from M7 to M26 on tasks

T6.2 – PIXEL Data Acquisition, T6.3 - PIXEL Information Hub, Task 6.4

- PIXEL Operational Tools, T6.5 - PIXEL Integrated Dashboard and

Notification, Task 6.6 – PIXEL Security and Privacy.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 12 of 126

Milestones This is the final deliverable for verification of the MS7 ICT solution

developed.
Deliverables This deliverable is the second version of the deliverable 6.3, and provides

the final version of the PIXEL Platform. In addition to the D6.3, the

following deliverables have been taken into account:

 Requirements, scenarios and use cases defined in D3.2, D3.3 and

D3.4 have been used to identify relevant ICT-related tasks.
 Models (D4.2) and Predictive algorithms (D4.4)

This deliverable, together with the D6.5 will be used for the development

of the pilots, whose description will be made in the deliverables D7.2 and

D7.3
Risks WT5#6 Technical activities are not completed on time, are not

aligned with the main objective, are not accurate or present a lack of

consistency.
This deliverable shows that technical activities related to T6.2 – T6.6

have been executed in a timely fashion in accordance with the

architecture proposed in D6.1.

WT5#14 Due to harshly divergences between formats of output/input

data of ICT systems to integrate, the development can be delayed or

paralyzed, and some extra effort will be needed to carry out the

project.
Particular attention is being devoted to the analysis and definition of data

models in WP6. While the generic principles have been provided in D6.1,

this deliverable provides a more detailed list of data entities identified in

PIXEL.

WT5#15 IoT components have security vulnerabilities.
A lot of effort has been dedicated defining the security component of the

PIXEL platform to mitigate this risk.

1.2. The rationale behind the structure

This report describes the work performed in T6.2 – T6.6 of PIXEL. Except the introduction and conclusion,

each section provides specific content defined in the DoA deliverable description. Topics that are covered in

each PIXEL component are further split in sub-sections for each of those components:

1. PIXEL Data Acquisition

2. PIXEL Information Hub

3. PIXEL Operational Tools

4. PIXEL Integrated Dashboard and Notification

5. PIXEL Security and Privacy

This report consists of the following sections:

1. About this document: Deliverable context in relation to the PIXEL DoA, work packages, tasks and

other deliverables.

2. Introduction: Relation with PIXEL objectives, uses cases and requirements.

3. PIXEL Platform Software. Description of the software release that is part of this deliverable. The

section provides the description of files provided for each PIXEL component.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 13 of 126

4. PIXEL Platform: Provides the description, the installation and user’s guide of the components.

5. Conclusions: Closing remarks.

1.3. Version-specific notes
This is the second version of the “PIXEL data acquisition, information hub and data representation”. This

report and software release provides the results of WP6 performed until M26 of the project.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 14 of 126

2. Introduction

Developments of the PIXEL ICT Infrastructure Framework are driven by real needs of the ports involved in

the project. Those needs and requirements are the key results of WP3. In order to keep development in line

with overall PIXEL objectives, each technical deliverable provides an introductory section where the relation

with objectives, use cases and requirements is defined. The following sections in this chapter provide that

overview for software modules developed in WP6.

2.1. Relation with PIXEL objectives and use cases

All work described in D6.4 and performed as part of tasks T6.2-T6.6 aims to fulfil objectives 1, 2, 3, 4 and 5,

which are listed in section 1.1 of this document.

This deliverable presents the final software version of the different main architectural modules. The

development of DAL (Data Acquisition Layer) has the potential to connect (Obj1) different data sources to a

common broker in a standardized way. Here the concept of data source is wide and applies not only to sensors

in ports but also to open data and some existing port applications (e.g. vessel calls) providing data. The DAL

represents the first level of data integration and support, by means of NGSI agents, automatic aggregation

(Obj2) of connected data sources.

The second level of data integration is represented by the IH (Information Hub), where heterogeneous port

data is brought to a common space (hub) and exposed in a harmonized (Obj2) way. To achieve this objective,

IH exposes and API (Application Programming Interface) for discovering, querying and storing data. Such

port data has also been converted into more common and useful semantic data formats (Obj2) that will later be

integrated in higher level applications: some examples will be provided in PIXEL with the Dashboard and

Operational Tools (Obj4, Obj5), but in fact the objective is general for future applications developed by ports

and/or port agents.

The IH (and in fact also the DAL) is designed not only to treat data but also to provide an interoperable

framework for actors, such as port agents and city networks (Obj1) to exchange data and optimize resources

and common policies.

To appropriately manage (Obj3) and exploit all available data in the IH, a dashboard has been developed,

which provides an operational UI (User Interface). Such a dashboard can represent data in different ways

according to various port profiles (e.g. environmental manager, gate manager, etc.) and their access rights.

Moreover, it encompasses additional features such as notifications, and Operational Tools, which can use the

data to manage models and predictive algorithms with the aim of providing better insights of port operations

(Obj3, Obj4, and Obj5).

To see real examples of input data used in the pilots under development, you can review the section 2.1 of the

deliverable 6.3. Such inputs should be acquired from multiple data sources (port data sources, open data

sources, sensors, …), stored and represented properly in the IH for further processing and visualization.

2.2. Relation to requirements

Requirements, gathered in WP3, that are related to the ICT framework are one of the main drivers of

development of the PIXEL platform. A full list of requirements directly or indirectly related to the

implementation of PIXEL software components can be reviewed in the D6.3 - Table 5.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 15 of 126

3. PIXEL Platform Source Code

All software components produce under PIXEL platform are available through online code repository.

3.1. PIXEL Git repository
The version control system being used at PIXEL is Gogs (Go Git Service). This implementation is based on

Git. Gogs, is written in Go language and is open source (MIT license). It is multiplatform software that has an

interface very similar to GitHub.

3.2. Software release and documentation
The different software components in PIXEL are being developed under two main objectives:

 Open source approach. most of the developed modules will be released as open source, while the

source code is available in an internal Git repository, so that any partner within the Consortium can

get an easy access and can potentially contribute (as a tester or developer). In the future, once the final

releases of each software module are available and have been tested in the pilots, the aim is to port the

source code to a public repository (e.g. GitHub
1
).

 Containerization. Though services may be implemented in different languages, one important goal is

to encapsulate the different modules into (Docker) containers, so that they facilitate the deployment

within the PIXEL platform. In fact, this is a best practice for continuous integration, delivery and

deployment. Similar to the previous step, the aim is to port the implemented containers into a public

repository (e.g. Docker Hub
2
).

Table 2: Software release overview

Component Description Repository URL D6.4 Section

PIXEL Data

Acquisition

Layer

This repository contains the files

needed to install the PIXEL

DAL

https://gitpixel.satrdlab.upv.es/marc

.despland/DataAcquisitionLayer

PIXEL Data

acquisition

PIXEL

Information

Hub

Repository that provides Docker

deployment script for deploying

Information Hub

https://gitpixel.satrdlab.upv.es/xlab/

information-hub-aggregator

PIXEL

Information Hub

PIXEL

Operational

Tools

Files needed to deploy

Operational Tools Component

https://gitpixel.satrdlab.upv.es/ben

momo/otpixel-v2/src/master

PIXEL

Operational

Tools

PIXEL

Dashboard &

Notifications

This repository contains all the

files needed to install the PIXEL

Dashboard & Notifications

Layer

https://gitpixel.satrdlab.upv.es/jcle

mente/dashboardPIXEL_v2/src/ma

ster

PIXEL

Integrated

Dashboard and

Notifications

PIXEL

Security &

Privacy

This repository contains the

documentation and files needed

to install the PIXEL Security

Layer

https://gitpixel.satrdlab.upv.es/marc

.despland/Security

PIXEL Security

Installation of

the pilot

Files necessary for the

installation of GPMB pilot

https://gitpixel.satrdlab.upv.es/marc

.despland/Installation

Pilots Installation

1
 https://github.com/

2
 https://hub.docker.com/

https://gitpixel.satrdlab.upv.es/marc.despland/DataAcquisitionLayer
https://gitpixel.satrdlab.upv.es/marc.despland/DataAcquisitionLayer
https://gitpixel.satrdlab.upv.es/xlab/information-hub-aggregator
https://gitpixel.satrdlab.upv.es/xlab/information-hub-aggregator
https://gitpixel.satrdlab.upv.es/benmomo/otpixel-v2/src/master
https://gitpixel.satrdlab.upv.es/benmomo/otpixel-v2/src/master
https://gitpixel.satrdlab.upv.es/jclemente/dashboardPIXEL_v2/src/master
https://gitpixel.satrdlab.upv.es/jclemente/dashboardPIXEL_v2/src/master
https://gitpixel.satrdlab.upv.es/jclemente/dashboardPIXEL_v2/src/master
https://gitpixel.satrdlab.upv.es/marc.despland/Security
https://gitpixel.satrdlab.upv.es/marc.despland/Security
https://gitpixel.satrdlab.upv.es/marc.despland/Installation
https://gitpixel.satrdlab.upv.es/marc.despland/Installation
https://github.com/
https://hub.docker.com/

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 16 of 126

4. PIXEL platform description

4.1. Introduction
The objective of PIXEL is to provide a software solution / platform where making use of IoT devices and IT

data sources exploit the data in the ports of the future.

In the end PIXEL is the first smart, flexible and scalable solution for reducing environmental impacts while

enabling the optimization of operations in port ecosystems through IoT.

Next figure depicts the global architecture of PIXEL including the interaction with the different data sources

and the output to the devices that will work with PIXEL.

Figure 1: Global architecture of PIXEL

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 17 of 126

4.2. Installation Guide
This section will illustrate the installation process of PIXEL. It will start with the necessary prerequisites. To

continue talking about the different modules, where a brief summary of each component will be made, it will

mention the technologies used in each component, its installation process, configuration (in case something

needs to be configured). For each component, an issues & solution section is provided.

4.2.1. Pre-requirements

4.2.1.1. Installation of docker and docker-compose

Table 3: Installation of Docker and docker-compose

Installation of docker

sudo apt-get update Update the apt package index

sudo apt-get install apt-transport-https Install packages to allow apt to use a repository over HTTPS

sudo apt-get install ca-certificates Allows the system (and web-browser) to check security certificates

sudo apt-get install curl Install curl (tool for transferring data)

sudo apt-get install software-properties-common Install scripts needed for managing software

curl -fsSL get.docker.com -o docker.sh Download from get.docker.com the docker.sh script to install the

latest version of Docker Engine

sudo sh get-docker.sh Execute script get-docker.sh

Test the installation of Docker

docker version Check docker version. To verify the installed Docker version number

sudo usermod -aG docker ${USER} Add user to the docker group. Allow to execute docker without sudo

Test the execution of Docker

docker run hello-world To check if you can access and download images from Docker Hub. The result

will tell you that Docker is working properly

Installation of docker-compose

sudo curl -L https://github.com/docker/compose/releases/download/1.22.0/docker-compose-`uname -s`-

`uname -m` -o /usr/local/bin/docker-compose Download the docker-compose version 1.22

sudo chmod +x /usr/local/bin/docker-compose Apply executable permissions to the binary

Test the installation of Docker-compose

docker-compose --version Check that the version has been installed correctly

4.2.2. PIXEL Data acquisition

4.2.2.1. Summary

The main purpose of the Data Acquisition Layer is to interface the external data sources to the PIXEL

Information Hub and to convert the original and heterogeneous data format to PIXEL Data Models.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 18 of 126

Figure 2: Purpose of Data Acquisition Layer

Data Acquisition exposed API to Dashboard to allow admin to manage the different NGSI Agents, and it

interacts with PIXEL Security to protect the NGSI Agents that exposed API.

Figure 3: Interaction of DAL with the rest of PIXEL components

Main activity of DAL is NGSI Agents pushing Data to Orion. Then Information Hub subscribe to new data

using the subscription API of FIWARE Orion. It is then notify using a call-back when new data arrive.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 19 of 126

The API of FIWARE Orion is well documented by FIWARE. The documentation on the NGSIv2 API is

available here, and documentation on how to use it is available here.

To facilitate NGSI Agents management, Data Acquisition provides an orchestrator that pilot the creation of

the NGIS Agents using a Docker Interface. DAL Orchestrator also communicates with DAL Proxy to

automatically exposed new daemon NGSI Agents behind WILMA. DAL Orchestrator exposes its API to the

Dashboard to allow creation of admin UI.

DAL Orchestrator also communicates with Keyrock to manage the permissions on WILMA for each NGSI

Agents that exposed an API through the DAL Proxy.

4.2.2.2. How to install

The full installation process relies on docker-compose.

The process of the installation is split in three different steps:

1. Configuration : You must adapt the docker-compose-*.yaml file and feed the different secrets value

2. Build : it is the docker-compose build process, a helper script ./build.sh is provided

3. Installation : it is the docker-compose up process, a helper script is provided

Different installation flavour is provided:

 full : it will install all the component

 orion : it will install only orion component

 dal : it will install dal-orchestrator and dal-proxy

By default, the full option is selected

Table 4 Installation of DAL

Installation of full DAL

cd DataAcquisitionLayer

./build.sh

./install.sh

4.2.2.3. Configuration

Platform specifics configuration are done using the docker-compose-*.yaml file and with the configuration of

the secrets files for each component

Table 5: Environment variables per each service in docker-compose file

Environment variables

Orion Database

MONGO_INITDB_ROOT_USERNAME=mongo The admin user of the mongo database

MONGO_INITDB_DATABASE=admin The name of the admin database

MONGO_INITDB_ROOT_PASSWORD_FILE The path to the admin password secret file (usually do

not change this value)

ORIONDB_PASSWORD_FILE The internal path to the secret file containing the

database password (usually do not change this value)

Orion

DB_HOST=dal-orion-db The database host

http://telefonicaid.github.io/fiware-orion/api/v2/stable/
https://fiware-orion.readthedocs.io/en/master/user/walkthrough_apiv2/index.html

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 20 of 126

DB=orion The name of the main database

DB_USER=orion The user to use to connect

DB_PASSWORD_FILE The internal path to the secret file containing the

database password (usually do not change this value)

DAL-Proxy

API_LISTEN_PORT=8080 The port use by the proxy to listen for management

API

API_LISTEN_IP The IP address use by the proxy to listen for

management API

PROXY_LISTEN_PORT The port use to listen for proxy request

PROXY_LISTEN_IP The IP use to listen for proxy request

ORCHESTRATOR_API_URL The URL of the DAL -Orchestrator

ORCHESTRATOR_TOKEN_FILE The secret file containing the token to access DAL-

Orchestrator

PROXY_API_TOKEN_FILE The secret file containing the token to access DAL-

Proxy management API

DAL-Orchestrator

SCHEMA_REPOSITORY_URL The URL of the public repository of data models

schema

SCHEMA_REPOSITORY

The container internal folder where the Data Models

repository is mounted on (do not change it)

NGSIAGENT_NETWORK

The docker network to use to create new NGSI Agent

NGSIAGENT_KEY=pixel The key to identified NGSI Agent image (do not

change it)

PROXY_API_URL

The URL of the Proxy management API

ORCHESTRATOR_LISTEN_PORT The port the orchestrator listens to

ORCHESTRATOR_LISTEN_IP The IP address the orchestrator listens to

ORION_API The URL of the ORION API

ORCHESTRATOR_TOKEN_FILE The secret file containing the token to access DAL-

Orchestrator

PROXY_API_TOKEN_FILE The secret file containing the token to access DAL-

Proxy management API

Secrets

Orion Database

orion.db.password The password for the user orion (random)

orion.db.root.password

The password for the admin user (random)

Orion

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 21 of 126

orion.db.password The password for the user orion (random)

DAL-Proxy

dal.proxy.api.token

The token to secure Proxy API access (random)

dal.orchestrator.api.token

The token to secure Orchestrator API access (random)

DAL-Orchestrator

dal.proxy.api.token

The token to secure Proxy API access (random)

dal.orchestrator.api.token

The token to secure Orchestrator API access (random)

4.2.2.4. Component status

Table 6: How to check the status of each service once has been deployed

How do you verify the service has been correctly deployed?

Orion

Executing "docker-compose ps" to check that the service is in "Up" state.

Check the version API : curl http://<ip>:<port>/version

Mongo - Database

With the command "docker-compose ps" you check that the service is in "Up" status, and with the

command "telnet IP 27001" that the TCP port is listening

DAL-Proxy

With the command "docker-compose ps" you check that the service is in "Up" status.

Use check status API request : curl http://<ip management>:<port management>/api/status

DAL-Orchestrator

With the command "docker-compose ps" you check that the service is in "Up" status.

Use check status API request : curl http://<ip management>:<port management>/api/status

4.2.2.5. Issues & Solution

DAL-Proxy and DAL-Orchestrator synchronize them self at start-up. We do not care in which order they start,

so you can restart them if you have any issue with them.

For Orion, rely on the official documentation: https://fiware-orion.readthedocs.io/en/master/

4.2.3. PIXEL Information Hub

4.2.3.1. Summary

As stated in D6.2, the Information Hub (IH) is a functional block in charge of centralising all the data

retrieved from DAL, homogenising and storing in a database capable to support big queries and scale

horizontally. Unlike the DAL, the Information Hub is designed to be high performant and scalable, and the

data is stored to support long-term queries. This is considered the central storage point of the IoT solution in

PIXEL and is the block that replies the queries from other functional blocks (such as Operational Tools or

https://fiware-orion.readthedocs.io/en/master/

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 22 of 126

Dashboards) and externals (API). The IH’s main components are a high-performance data broker and a

NoSQL database, although it contains accessory components that support its correct functioning.

The following diagram depicts the architecture of Information Hub (source: D6.2):

Figure 4: PIXEL Information Hub architecture

4.2.3.2. How to install

Information Hub is distributed as a set of Docker images and can be deployed using Docker Compose tool.

The information-hub-docker repository provides Docker Compose projects for installing Information Hub and

Elasticsearch. The installation is split into two parts (two Docker Compose projects) - Information Hub and

Elasticsearch which are located in the infhub and elastic folder respectively. The infhub Docker Compose

project installs Information Hub together with its prerequisites Apache Kafka and ZooKeeper. The elastic

Docker Compose project installs Elasticsearch and Kibana version 7.2.0. Alternatively, a custom installation

of Elasticsearch can be used (considering that the supported version of Elasticsearch is 7.2.x). All services of

Information Hub are installed to the single machine and likewise Elastic services are installed to a single

machine which can be the same or different than for Information Hub.

https://gitpixel.satrdlab.upv.es/xlab/information-hub-docker

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 23 of 126

Figure 5: Information-hub-docker

The Information Hub Docker Compose project also includes the AIS Data Collector service which collects

AIS data from AISHub data sharing service. The installation of this service is optional and requires an

AISHub membership.

The Docker Compose deployment of Information Hub consists of the following services:

Table 7: Docker Compose deployment of Information Hub

Service Docker Image

Apache ZooKeeper wurstmeister/zookeeper

Apache Kafka wurstmeister/kafka

Orion Data Collector docker.pixel-ports.eu/information-hub/orion-data-collector

Controller docker.pixel-ports.eu/information-hub/information-hub-controller

Data Writer docker.pixel-ports.eu/information-hub/srv-data-writer

Data Monitor docker.pixel-ports.eu/information-hub/srv-data-monitor

Data Extractor docker.pixel-ports.eu/information-hub/srv-data-extractor

Elasticsearch Proxy docker.pixel-ports.eu/information-hub/elasticsearch-proxy

AIS Data Collector (optional) docker.pixel-ports.eu/information-hub/ais-data-collector

Additionally, the provided Docker Compose deployment of Elasticsearch & Kibana consists of the following

services:

Table 8: Docker Compose for Elasticsearch & Kibana

Service Docker Image

Elasticsearch docker.elastic.co/elasticsearch/elasticsearch:7.2.0

Kibana docker.elastic.co/kibana/kibana:7.2.0

4.2.3.2.1. Requirements

Requirements for the Information Hub installation are:

https://www.aishub.net/

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 24 of 126

● Docker

● Docker Compose

● Orion Context Broker for Orion Data Collector

The Information Hub installation has been tested on Ubuntu Linux 18.04 LTS and CentOS Linux 7.2 with

Elasticsearch version 7.2.0.

4.2.3.2.2. Installing Elasticsearch

Clone or download the information-hub-docker repository to your Linux server then go into the elastic folder

inside the repository. The provided Docker Compose file will deploy Elasticsearch and Kibana version 7.2.0.

Elasticsearch can be installed on the same or different machine than Information Hub.

Prerequisites

The default operating system limits on virtual memory (mmap counts) is likely to be too low for Elasticsearch,

which may result in out of memory exceptions. See Elasticsearch documentation for details.

To check vm.max_map_count value, run:

sysctl vm.max_map_count

In case the `vm.max_map_count` value is too low (recommended value is 262144), you have to increase the

limit by running following command:

sysctl -w vm.max_map_count=262144

Start Elasticsearch

To start the Elasticsearch together with Kibana, run the following command:

docker-compose up -d

Check if Elasticsearch is running by making following request:

curl http://localhost:9200

Figure 6: Checking elasticsearch is running

https://gitpixel.satrdlab.upv.es/xlab/information-hub-docker
https://www.elastic.co/guide/en/elasticsearch/reference/current/vm-max-map-count.html

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 25 of 126

You can check Elasticsearch logs for errors by running:

docker-compose logs elasticsearch

In case you find following error in Elasticsearch logs:

elasticsearch | ERROR: [1] bootstrap checks failed

elasticsearch | [1]: max virtual memory areas vm.max_map_count [65530]

is too low, increase to at least [262144]

you have to increase the vm.max_map_count limit.

Kibana dashboard is available at the following address: http://HOST:5601/app/kibana

4.2.3.2.3. Installing Information Hub

Clone or download the information-hub-docker repository to your Linux server, go into the infhub folder

inside the repository and follow the steps below. The provided Docker Compose file deploys Information Hub

together with its prerequisites Apache Kafka and ZooKeeper to a single machine.

Edit Configuration Files

Before starting the deployment, check following two configuration files and adjust them to your environment

if needed:

● .env

● config/infhub.properties

● config/log4j2.xml

.env configuration file

The .env file contains environment variables referenced in the Docker Compose file:

Figure 7: Environmental variables

Configuration settings are:

● STS_HOST: IP address or hostname of Elasticsearch in the role of Short-Term Storage

● LTS_HOST: IP address or hostname of Elasticsearch in the role of Long-Term Storage

infhub.properties configuration file

The infhub.properties configuration file contains configuration settings for Information Hub:

Figure 8: Properties of infhub.properties configuration file

Configuration settings are:

● orion.address: Orion Context Broker endpoint address.

● orion.header.fiware-service: value of the `Fiware-Service` HTTP header to use when sending requests

to Orion Context Broker. This header is used by Orion Context Broker in multi-tenant / multi-service

deployment to identify the service / tenant.

http://host:5601/app/kibana
https://gitpixel.satrdlab.upv.es/xlab/information-hub-docker

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 26 of 126

● orion.header.fiware-servicepath: value of the `Fiware-ServicePath` HTTP header to use when send-

ing requests to Orion Context Broker. This header is used by Orion Context Broker to define the

scope of an entity.

● orion-coll.notification.callback.url: address of Information Hub endpoint accepting notification mes-

sages from Orion Context Broker. Default value `http://172.17.0.1:9009` can be used if Orion is de-

ployed to the same machine as Information Hub.

● orion-coll.notification.listener.port: callback address of Orion Data Collector notification listener. The

Collector subscribes to notifications from Orion Context Broker providing this address of an endpoint

where Orion Context Broker should send notification messages to.

● orion-coll.notification.listener.port: local port on which Orion Data Collector notification listener

should listen.

log4j2.xml configuration file

The log4j2.xml file contains Log4j logging configuration for Information Hub services:

Figure 9: Logging configuration for Information Hub

The default logging level is info for Information Hub classes. Change to debug or trace level for more detailed

logging information.

Start Information Hub

Start the Information Hub by running following command from the infhub folder inside the information-hub-

docker repository:

docker-compose up -d

Figure 10: Starting Information Hub

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 27 of 126

Using the ‘docker-compose ps’ command you can check the state of Information Hub services and

verify that Information Hub has been correctly deployed:

Figure 11: Checking state of Information Hub

After the Information Hub has started, it will subscribe to the data sources registry at Orion Context Broker

(managed by the DAL Inquisitor), register data sources and import initial data records.

4.2.3.2.4. Installing AIS Data Collector (Optional)

Note: AISHub membership is required. Only AISHub members are allowed to access AISHub web service

and retrieve AISHub data.

Go to the infhub folder inside the information-hub-docker repository from where Information Hub has been

started.

Before starting the AIS Data Collector, make sure that following configuration properties are added to the

`config/infhub.properties` configuration file:

Figure 12: AIS Data Collector settings

The meaning of configuration properties above is:

● aishub.request.url: AISHub endpoint (request URL) from where AIS data can be retrieved. This URL

is provided by AISHub after obtaining a membership.

● aishub.request.interval: interval in seconds for retrieving AIS data

If Information Hub is already running, start AIS Data Collector by running following command:

./infhub+ais.sh up -d ais-collector

infhub+ais.sh is a convenience script which runs:

docker-compose -f docker-compose.yml -f docker-compose-ais.yml \

 <parameters>

You can check whether AIS Data Collector is up and running using following command:

Figure 13: Checking state of AIS Data Collector

Alternatively, you can start Information Hub together with AIS Data Collector by running:

./infhub+ais.sh up –d

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 28 of 126

4.2.3.2.5. Installing Information Hub Management Console

Information Hub Management Console is a Java desktop application and is distributed as a ZIP archive

containing an executable JAR package with dependencies and a configuration file. Java 8 is required to run it.

Download the ZIP archive, extract it and navigate to the infhub-management-console directory. Open the

infhub-management-console.properties file in an editor and modify configuration settings as needed for your

environment. csco.archive.controller.host and csco.archive.monitor.host settings specify IP address or

hostname of Information Hub Controller and Monitor components respectively. Since all Information Hub

services are installed to the same machine using the provided Docker Compose project, both values have the

same value.

Figure 14: Information Hub Management Console

To run the Information Hub Management Console, use the following command:

java -jar infhub-management-console-<version>.jar

Path to the infhub-management-console.properties configuration file can be provided as a command line

parameter otherwise the current directory is used.

4.2.3.3. Configuration

Information Hub configuration is described in the Edit Configuration Files chapter and is carried out before

Information Hub is started. After starting up no further action is needed.

If you edit configuration files at runtime, Information Hub or just the affected services have to be restarted. To

restart Information Hub, run the following command from infhub folder inside information-hub-docker

repository:

docker-compose restart

To restart just specific services, run:

docker-compose restart <list of services>

In addition to that, some configuration of Information Hub can be made via the Information Hub management

console as shown in the figure below. See Settings View chapter of the Information Hub user’s guide.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 29 of 126

Figure 15: Information Hub settings

4.2.3.4. Monitoring

To verify that Information Hub services are up and running, execute the ‘docker-compose ps’ command in the

inhub folder inside the information-hub-docker repository from where Information Hub was started:

Figure 16: Checking state of Information Hub

Furthermore, to monitor Information Hub services using some monitoring software (e.g. Nagios) following

endpoints can be used for monitoring rules configuration to make sure that each component is working

correctly:

Table 9: Testing Orion Data Collector

Component: Orion Data Collector

Endpoint: http://IH_HOST:8011/archivingSystem/collector/v1/admin/instance

Expected response:
HTTP/1.1 200 OK

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 30 of 126

{

 "instances": [

 "9bf4b17684ba"

],

 "instanceDescriptions": {

 "9bf4b17684ba": {

 "hostname": "9bf4b17684ba",

 "enabled": true,

 "active": true,

 "status": "OK"

 }

 }

}

Table 10: Testing Data Writer

Component: Data Writer

Endpoint: http://IH_HOST:8012/archivingSystem/writer/v1/admin/instance

Expected response:
HTTP/1.1 200 OK

{

 "instances": [

 "f4b81709c4be"

],

 "instanceDescriptions": {

 "f4b81709c4be": {

 "hostname": "f4b81709c4be",

 "enabled": true,

 "active": true,

 "status": "OK"

 }

 }

}

Table 11: Testing Data Extractor

Component: Data Extractor

Endpoint: http://192.168.0.13:8013/archivingSystem/extractor/v1/admin/instance

Expected response:
HTTP/1.1 200 OK

{

 "instances": [

 "cc5726394f71"

],

 "instanceDescriptions": {

 "cc5726394f71": {

 "hostname": "cc5726394f71",

 "enabled": true,

 "active": true,

 "status": "OK"

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 31 of 126

 }

 }

}

Table 12: Testing Controller

Component: Controller

Endpoint:

http://192.168.0.13:8011/archivingSystem/collector/v1/admin

http://192.168.0.13:8012/archivingSystem/writer/v1/admin

http://192.168.0.13:8013/archivingSystem/extractor/v1/admin

http://192.168.0.13:8015/archivingSystem/context/v1

Expected response:
HTTP/1.1 200 OK

Table 13: Testing Data Monitor

Component: Data Monitor

Endpoint: http://IH_HOST:8020/archivingSystem/monitor/v1/notification

Expected response:
HTTP/1.1 200 OK

{

 "page": 0,

 "pageCount": ...,

 "notifications": [...]

}

Table 14: Testing Orchestrator

Component: Orchestrator

Endpoint: http://IH_HOST:8015/archivingSystem/context/v1/components/Orchestrator

Expected response:
HTTP/1.1 200 OK

{

 "instances": [

 "Orchestrator/cd22b2d308e4"

],

 "instanceDescriptions": {

 "Orchestrator/cd22b2d308e4": {

 "componentId": "Orchestrator",

 "hostname": "cd22b2d308e4",

 "enabled": true,

 "active": true,

 "status": "OK"

 }

 }

}

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 32 of 126

Table 15: Testing Elasticsearch Proxy

Component: Elasticsearch Proxy

Endpoint: http://IH_HOST:8200/

Expected response:
HTTP/1.1 200 OK

{

 "name" : "elasticsearch",

 "cluster_name" : "fair-elastic",

 "cluster_uuid" : "nJuE5xGiTCqXcSR7bYFR6Q",

 "version" : {

 "number" : "7.2.0",

 "build_flavor" : "default",

 "build_type" : "docker",

 "build_hash" : "508c38a",

 "build_date" : "2019-06-20T15:54:18.811730Z",

 "build_snapshot" : false,

 "lucene_version" : "8.0.0",

 "minimum_wire_compatibility_version" : "6.8.0",

 "minimum_index_compatibility_version" : "6.0.0-beta1"

 },

 "tagline" : "You Know, for Search"

}

Information Hub components can be also monitored using Information Hub Management console:

Figure 17: Information Hub Management Console

4.2.3.5. Issues & Solution

In case any issues arise, checking the Information Hub log files is the first step for determining the nature of

the problem. Go to the information-hub-docker/infhub folder from where Information Hub has been started

and use docker-compose logs command to view the application logs:

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 33 of 126

Figure 18: Checking the logs

For example, to view the last lines of Orion Collector logs, use the command below:

Figure 19: Viewing the last lines of Orion Collector logs

4.2.4. PIXEL Operational Tools

4.2.4.1. Summary

4.2.4.1.1. Main concepts and architecture

The Operational Tools (OT) are mainly in charge of bringing closer to the user both the models and predictive

algorithms developed within the PIXEL project. By user here we mean administrators and managers analysing

port operations by means of simulation models and predictive algorithms. In order to reach that goal, a set of

high-level tasks are defined:

 Publish models and/or predictive algorithms.

 Edit and configure the models and/or predictive algorithms.

 Execute models and/or predictive algorithms.

 Schedule models and/or predictive algorithms to be executed at a specific time once or periodically.

 Define different operational and environmental Key Performance Indicators (KPIs), based on specific

data available in the information hub for tracking and monitoring purposes.

 Establish some pattern detection mechanism. The most basic one is the use of triggers.

 Get the trends of a model and/or predictive algorithm (e.g. historical data).

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 34 of 126

Figure 20: Operational Tools - Architecture overview

The functional overview of the Operational Tools is depicted in the figure next page. Several internal

components can be identified:

 OT UI: this is the graphical interface to access (most of) the underlying functionalities. This compo-

nent provides independence and autonomy, but it can be later integrated as part of the PIXEL dash-

board to provide a single-entry point for administrators.

 OT API: backend API implementing the functionalities needed. This component is aligned with the

PIXEL security framework in order to fulfil all required security policies (e.g. authentication, authori-

zation, etc.).

 Publication component: it allows publishing both models and predictive algorithms. By publishing it

may be necessary to deploy the models as Docker containers. Besides, the models ‘and predictive al-

gorithms’ configurations can also be edited.

 Engine: this component is responsible for executing the different models and predictive algorithms.

The execution can be invoked in real time or scheduled.

 Data processing: it is responsible for managing trends from specific data (KPIs) and also for some in-

ternal data adaptations required.

 Event processing: this component is responsible for real-time monitoring of indicators and trigger

specific actions depending on previously configured rules. It includes a connector (bridge) to be inte-

grated with an external notification system.

 Database: the database includes description of the models and predictive algorithms that can be used,

KPI description, rules as well as other configuration and output related parameters necessary for the

correct behaviour of the internal building blocks.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 35 of 126

Figure 21: Operational Tools - Functional overview

4.2.4.1.2. Models

Models are entities in the PIXEL platform than will be used by port administrators to run and simulate models

and predictive algorithms with different input parameters. As every model and predictive algorithm is

different from each other and has its own internals, there is a need to homogenize a common abstract model

entity to be the internal representation in the PIXEL platform. It encompasses two different types of

developments that have been done within the PIXEL project:

 Models: models relate to energy, traffic and environment. A specific model is the Port Environmental

Index (PEI). For more information about the models, please check the PIXEL main documentation

repository by clicking here.

 Predictive algorithms: predictive algorithms relate to estimating time of arrival in ports, traffic at gates

and use of AIS data. For more information about the models, please check the PIXEL main documen-

tation repository by clicking here.

The figure next page shows the process experienced by any model or predictive algorithm that is going to be

used inside the PIXEL platform:

 The model or predictive algorithm is first drafted as algorithm and then implemented as program.

 The model is encapsulated into a Docker container to convert it into a portable component. Addition-

ally, an OT adaptor is attached to his Docker container in order to be integrated into the PIXEL plat-

form.

 Through the publication process the model or predictive algorithm becomes aware into the PIXEL

platform. The Docker image is pulled from the (open) GitHub repository and can be used internally.

 After published, the model or predictive algorithm can be executed by passing the appropriate argu-

ments (parameters) as JSON file. The description of this JSON file will be described in future sec-

tions. The execution can run immediately (real time) or it can be scheduled to be performed periodi-

cally (e.g. every day or week).

 The results of the model are stored into the PIXEL Information Hub, which can be queried by the

PIXEL dashboard to visualize them in form of particular graphs depending on the model or predictive

algorithm.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 36 of 126

Figure 22: Link between models and the Operational Tools

4.2.4.1.3. Key Performance Indicators

According to Wikipedia a Key Performance Indicator (KPI) is a type of performance measurement. KPIs

evaluate the success of an organization or of a particular activity in which it engages. For the PIXEL project,

we envision that basic KPIs will mostly refer to:

 Sensors: the PIXEL platform encompasses an IoT network and can therefore monitor any integrated

sensor. Some of the sensors may represent an important impact on the decision made from port au-

thorities (e.g. depending on the tide level or the wind speed some cargo type is not recommended to

be loaded/unloaded).

 Models and Predictive algorithms: models and predictive algorithms are typically complex and pro-

vide various outputs; however, some specific items of the output can be considered of crucial im-

portance and be characterized as KPIs.

More complex KPIs can be potentially defined by combining previous ones, but there is a need to define a

common format for them as data entity. PIXEL has followed the FIWARE Data model, which specification

can be accessed here. Some extensions have been added, when needed, to particularize it to port and model

needs (e.g. environmental KPIs for the PEI calculation). You can find more information on the main

documentation repository of PIXEL, clicking here, as there is a section dedicated to Data Models.

Figure 23: Key Performance Indicators

4.2.4.1.4. Event processing

According to Wikipedia an Event Processing is a method of tracking and analysing (processing) streams of

information (data) about things that happen (events) and deriving a conclusion from them. Complex event

processing, or CEP, consists of a set of concepts and techniques developed in the early 1990s for processing

real-time events and extracting information from event streams as they arrive. The goal of complex event

processing is to identify meaningful events (such as opportunities or threats) in real-time situations and

respond to them as quickly as possible.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 37 of 126

Considering that the PIXEL platform uses as main database Elasticsearch, the selected and natural choice as

CEP engine refers to ElastAlert. You can find detailed information about ElastAlert by clicking here. Some of

its main features are reliability, modularity and easiness to set up and configure.

From the perspective of the Operational Tools, and considering the current needs of the target ports, this will

mainly be related to monitored KPIs where some thresholds are reached. For these situations, rules and alerts

are 'templatized' to facilitate the configuration to port operators and define proper actions. More complex

actions are possible and supported through ElastAlert; this will be commented in the Developer's Guide

subsection, explaining possible extensions.

Figure 24: Operational Tools- Event Processing overview

4.2.4.2. How to install

4.2.4.2.1. Note about Docker

Though it was intended to provide a Docker image for every component of the architecture in order to

generate a common 'docker-compose' approach, the Operational Tools have special requirements that imposed

additional barriers:

 Docker execution: Running a Docker within a Docker (DiD, Docker in Docker) is difficult, tricky

and not recommended in various cases. See this article (https://jpetazzo.github.io/2015/09/03/do-not-

use-docker-in-docker-for-ci/) for more information about it.

 Docker client libraries: OT is developed in Java and there exist the possibility to use a docker-java

client to build a Docker image. However, current implementations of the library in Maven are giving

strong library dependency problems and are not well documented. It is envisioned to make a port of

the current implementation to support a Java docker client, but it will take time and is envisioned for

the next version

4.2.4.2.2. Requirements

The Operational Tools have been tested on Linux Ubuntu Server 18.04 LTS. Basically, you will need to

install JDK 8, Tomcat and some additional libraries. Everything is done via shell scripts and configuration

files, that you can edit. The Operational Tools have been developed as a Tomcat application (WAR file), but

this manual will not impose compiling from the sources; instead, it will provide a default precompiled WAR

file serving as template to be configured.

4.2.4.2.3. Installation

Download the files under the ‘install’ folder of the OT GitHub repository to your Linux server (3 shell script

files, 1 WAR file, and a ‘config’ folder with 5 files). Then follow the different steps below.

https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 38 of 126

Figure 25: Installation and configuration files for the Operational Tools

1. STEP 1: Edit the configuration

Under the 'conf' directory, you will find 5 different files to edit:

 default.configuration.xml: Here you will have to edit/change some parameters, such as the location

of the Elasticsearch server and the location of the MongoDB server (data source element). You can

leave the other parameters as they are.

Figure 26: OT- Default configuration file

 log4j.xml: this is the Log4J configuration file. Probably you do not need to configure it at all. All logs

are set by default under /var/log/tomcat with various logging files to track different activities of the

engine.

 settings.js: Just edit and change here the current IP of the server where you are deploying the OT ap-

plication, as well as the apiKey you want to use.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 39 of 126

Figure 27: OT- Settings UI configuration file

 swagger.json: Just edit and change here the current IP of the server where you are deploying the OT

application (host element).

Figure 28: OT –Swagger configuration file

 tomcat-users.xml: Just change and insert here the password you want to use for later updates (rede-

ployments). This is in fact optional but allows doing updates without reinstalling again everything.

Figure 29: OT- Tomcat configuration for user deployment

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 40 of 126

Note: In Linux it is difficult to estimate the current IP of a server, as it may have various IPs (localhost,

docker interfaces, bridged interfaces, etc.). Therefore, we have opted for inputting the IP in the files

'settings.json' and 'swagger.json'.

2. STEP 2: Run the scripts

After configuring the files, return to the previous ‘install’ folder, and start running the scripts one by one as

administrator.

$ sudo sh 01-install-dependencies

This will update and upgrade the system, and install all required libraries (e.g. JDK 8, Tomcat 8, etc.)

sudo sh 02-system-configuration

This will make some system configuration to allow the tomcat8 user manage docker instances. As the script

includes the tomcat8 user into the 'docker' group (/etc/group file), it typically requires a restart so that the

changes become effective.

sudo sh 03-tomcat8-configuration

This will rebuild the WAR considering the configuration files under the 'conf' directory and deploy it in

Tomcat8.

4.2.4.3. Configuration

The configuration has already been provided at installation time (see previous step). No further action is

necessary. All services should be up and running (mongo, tomcat8 server and tomcat8 application).

How do you verify the service has been correctly deployed?

Mongo - Database

Supposing Mongo is running as service within the host server, just type in the command line.

Figure 30: Testing if Mongo is running

You should see (in green) if the server is active and running properly; otherwise, you will see an error.

If Mongo has been installed elsewhere (not localhost) or as a docker instance, you can use the command

"docker-compose ps" to check that the service is in "Up" status, and with the command "telnet IP 27001" that

the TCP port is listening.

Note: Remember to configure Mongo server to support non-localhost requests, if necessary

Tomcat8 server

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 41 of 126

Similar as for Mongo, just type in the command line

Figure 31: Testing if Tomcat8 is running

You should see (in green) if the server is active and running properly; otherwise, you will see an error.

Tomcat OT application - UI

Open a web browser and go to http://<your-server-ip>:8080/otpixel/ui.

You should be able to see the UI of the application. Even if you cannot see neither models nor predictive

algorithms (not yet deployed), you should not see any error in the 'Developer's panel' of the browser

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 42 of 126

Figure 32: Testing if the UI is running

If you want to perform a more advanced test, then go to 'Models' on the Left Menu and click on the 'Add a

new Model' button. Just enter the following:

 Docker name: pixelh2020/dummypas:0.1

 Label: getInfo

Figure 33: Testing if a specific functionality is working

You will see that the new model should have been entered in the list of models, with a status of 'created'. Just

wait a couple of minutes (the Docker image needs to be pulled from the Dockerhub repository and this could

take a while) and refresh the screen. Now the 'status' should have change to one of:

 deployed: this means that everything went properly. By clicking on the 'Edit' icon of this model, you

may see the details.

 error: there has been an error. More information may be obtained by checking the log file (otpix-

elEngineCreateModel.log); this is commented in the next section

Tomcat OT application – Swagger

Open a web browser and go to http://<your-server-ip>:8080/otpixel/doc

You should be able to see the Swagger UI of the application. You can click on ‘Authorize’, enter your apiKey

and start testing the API. As there are no models or predictive algorithms, you should get an empty array.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 43 of 126

Figure 34: Testing the Swagger

4.2.4.4. Issues & Solution

4.2.4.4.1. Deploy/update a new OT version

As commented before, new updates are released a tomcat application (WAR files), therefore the only action to

perform consists in redeploying the WAR file in the Tomcat8 server. However, it is recommendable to

undeploy the previous OT application first, as it uses several threads to manage different tasks internally.

Redeploying on top of a running application does not prevent the previous threads to stop running.

4.2.4.4.2. Check for logs

The Operational Tools includes a series of different log files to monitor the activity of different tasks

independently:

 otpixelAPI.log: general log file for OT.

 otpixelEngineCreateModels.log: management thread of the OT Engine to manage the creation of

models and predictive algorithms.

 otpixelEngineDeleteModels.log: management thread of the OT Engine to manage the deletion of

models and predictive algorithms.

 otpixelEngineCreateInstances.log: management thread of the OT Engine to manage the creation of

instances.

 otpixelEngineCreateScheduledInstances.log: management thread of the OT Engine to manage the

creation of scheduled instances.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 44 of 126

Figure 35: OT log files

4.2.5. PIXEL Integrated Dashboard and Notifications

4.2.5.1. Summary

PIXEL Integrated Dashboard and Notifications is the component that has the capability of representing data

stored in the IH meaningful combined visualizations in real time. Also, it provides the capability to send

notifications based on the status of the data received from the sensors. Finally, this module provides

(aggregates and homogenises) all the UI for the different functional blocks (Operational Tools for

example).

Which are the components in which the dashboard is divided and how do they interact with other components

of PIXEL?

 Dashboard component is divided in two subcomponents:

o Frontend: Offers a web application based on the VueJS Framework, this component exposes

the UI with which the user interacts.

o Backend: Exposes all the services needed for the dashboard. Moreover, it connects to the

IDM service to ensure users are authorized. It has a non-relational database and

communicates with PIXEL Operational Tools for the management of the containers. Backend

also has a component responsible of alerts.

 Backend of alerts: It has a service that exposes a REST API to create different types

of alerts. Once launched they are sent directly to the backend. It requires connection

to PIXEL Information Hub.

 Proxy. To maintain a single point of entry. There are redirections for all the PIXEL components. All

the services must be exposed through this component.

Next figure depicts the components involved in the component.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 45 of 126

Figure 1: PIXEL Dashboard components

The functional overview of the different options that has the Dashboard are:

 Overview. View where the visualizations created by the end-user and published are shown. In this

way, they are accessible as soon as the user accesses to the platform.

 Views. Component responsible for creating the different types of visualizations (Gantt diagram,

Table, etc.) of the data coming from sensors.

 Dashboard. UI responsible for creating dashboards using visualizations created in the previous

section.

 Permission. Component aligned with the PIXEL Security & Privacy component in order to fulfil all

required security policies (e.g. authentication, authorization, roles, permission, etc.).

 PAS Information. User interface to fill in the different entities (resources, rules and supplier chain)

needed as input for the PAS Model (Port Activity Scenario).

 Map. Component that will show geolocated data (sensors, devices, etc.) from the different ports.

 Alerts. Component responsible for real-time monitoring of data and trigger alerts depending on their

value.

 Operational Tools. User interface to access the functionalities for the Operational Tools component.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 46 of 126

Figure 3: Dashboard menu entries

4.2.5.2. How to install

The installation of the dashboard has as a prerequisite the installation of docker and docker-compose (see

Installation of docker and docker-compose).

For the installation it will be necessary to have a directory with the following elements:

 docker-compose file: File where the necessary services to raise an instance of the dashboard will be

described.

 pixel_ports folder: It will contain the source code of the client solution. The code does not need to be

compiled. When the docker-compose instruction is launched, the build of this solution is performed.

 pixel_api folder: It contains the code of the server solution. This solution is dashboard’s API. It is in

charge of interacting with MongoDB to store / list: alerts, notifications, resources, rules, etc. The

entities with which the dashboard component interacts.

Figure 2: Services included in docker-compose file

The services included in the docker-compose file are:

 kibana: It raises an instance of Kibana on which ElastAlert plugin is installed.

 mongo: It raises an instance of MongoDB.

 API: This service is responsible for compiling the server solution. Once compiled it exposes our

customer services for their interaction.

 dashboard: This service compiles the client solution. Once compiled, it takes care of building a server

with the client solution.

 elastalert: Plugin installed on Kibana that acts as a notification engine. The service provided by this

component is in charge of seeing if the rules are met in order to launch the notifications.

 webapp: Service that raises the UI of the component responsible for the definition of rules / alerts.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 47 of 126

4.2.5.3. Configuration

The installation is done by executing the following instruction in the directory where the docker-compose is

located:

sudo docker-compose up –d

This instruction is in charge of raising all the services of the file.

Table 16: How to verify the Dashboard is correctly deployed

How do you verify the service has been correctly deployed?

Kibana – UI DEV

Executing "docker-compose ps" to check that the service is in "Up" state, on the other hand, it is also

recommended to check that the TCP port is listening with the command "telnet IP 5601"

Mongo - Database

With the command "docker-compose ps" you check that the service is in "Up" status, and with the

command "telnet IP 27001" that the TCP port is listening

Dashboard – Api

With the command "docker-compose ps" you check that the service is in "Up" status, and with the

command "telnet IP 3000" that the TCP port is listening

Dashboard - client

With the command "docker-compose ps" you check that the service is in "Up" status, and with the

command "telnet IP 8080" that the TCP port is listening

Elastalert – server alerts

With the command "docker-compose ps" you check that the service is in "Up" status, and with the

command "telnet IP 3030" that the TCP port is listening

Praeco – UI Alerts

With the command "docker-compose ps" you check that the service is in "Up" status, and with the

command "telnet IP 8085" that the TCP port is listening

4.2.5.4. Issues & Solution

 How to deploy / update the dashboard version: Once the dashboard component is initially

deployed, it is possible to update the version of the server solution (api) or the client solution

(dashboard). To do so, it will be necessary to update the source in the corresponding folder:

pixel_ports (dashboard), pixel_api (api). Both services can now be deployed again. To do this you

have to raise the docker-compose instance but only of these components not of the whole file. The

instruction to be executed in each case is:

o dashboard: sudo docker-compose up --build -d dashboard

o api: sudo docker-compose up --build -d api

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 48 of 126

4.2.6. PIXEL Security

4.2.6.1. Summary

The main function of the security layer is to secure the access to the API of the other components from outside

the platform and to provide a solution for identity management.

Figure 36: Purpose of PIXEL Security Layer

The security layer secures the access to the NGSI Agents that exposed an API in the Data Acquisition Layer,

but it also provides security to the dashboard UI to access the PIXEL’s API (Dashboard, Information Hub and

Operational Tools).

We rely on the FIWARE architecture and solution to implement those features in PIXEL, using the FIWARE

Generic Enablers:

 KeyRock : The Identity Manager

 Wilma (PEP Proxy) : The OAuth2 proxy that check the access

 AuthzForce : An XACML authorization solution

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 49 of 126

Figure 37: Diagram of PIXEL Security Layer

4.2.6.2. How to install

The full installation process relies on docker-compose.

The process of the installation is split in three different steps:

 Configuration : You must adapt the docker-compose-*.yaml file and feed the different secrets value

 Build : it is the docker-compose build process, a helper script ./build.sh is provided

 Installation : it is the docker-compose up process, a helper script is provided

Table 17: Installation of Security Layer

Installation of Security Layer

cd Security

./build.sh

./install.sh

4.2.6.3. Configuration

Platform specifics configurations are done using the docker-compose-*.yaml file and with the configuration of

the secret files for each component:

Table 18: Environment variables for security layer

Environment variables

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 50 of 126

Wilma

PEP_PROXY_AZF_PORT The port use to contact AuthZForce

PEP_PROXY_AZF_HOST The host that exposed AuthZForce

PEP_PROXY_APP_PORT

The port use to contact the backend protected by Wilma (DAL-Proxy

for example)

PEP_PROXY_APP_HOST

The host that exposed the backend protected by Wilma (DAL-Proxy

for example)

PEP_PROXY_APP_ID The APP ID created in Keyrock for this PEP Proxy

PEP_PROXY_IDM_PORT The port use to contact KeyRock

PEP_PROXY_IDM_HOST The host that exposed KeyRock

PEP_PROXY_PORT The port Wilma listen to

KeyRock

IDM_DB_HOST The address of the MySQL Database

IDM_DB_USER The MySQL user to connect the database

IDM_HOST The URL to contact KeyRock

IDM_PORT The port KeyRock listen to

IDM_AUTHZFORCE_HOST The host to contact AuthZForce

AuthZForce

Secrets

Wilma

sec_wilma_pub.token.secret A token use for encryption (random)

sec_wilma_pub.password

The password for the PEP Proxy created with the application in

KeyRock

sec_wilma_pub.proxy.username

The id of the PEP Proxy created with the application in KeyRock

MySQL

idm.db.pass The MySQL root password (random)

KeyRock

idm.db.pass The MySQL root password (random)

idm.admin.pass

The password for the admin user of KeyRock (random)

idm.session.secret

A token use for encryption (random)

4.2.6.4. Component status

Table 19: How to check the status of the different services in the docker-compose file

How do you verify the service has been correctly deployed?

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 51 of 126

MySQL

Executing "docker-compose ps" to check that the service is in "Up" state , and with the command "telnet IP

3306" that the TCP port is listening

KeyRock

With the command "docker-compose ps" you check that the service is in "Up" status, and check you can

connect to KeyRock with the admin/password

Wilma

With the command "docker-compose ps" you check that the service is in "Up" status.

AuthZForce

With the command "docker-compose ps" you check that the service is in "Up" status.

4.2.6.5. PIXEL specifics deployment

When you have deployed KeyRock and AuthzForce, you can deploy as many Wilma that you need. Wilma is

just a simple HTTP Proxy that you install in the middle of the API flow to check the request provide a valid

token and is allow to access the resources.

By default we use Wilma to protect NGSI Agents that is configured as daemon, and we will also use it to

protect the access to private API from the outside of the platform.

Figure 38: Wilma diagram

To install other Wilma, you have to create the corresponding Application in KeyRock using the UI or the API.

Then retrieve the application id, pep_proxy id and password and then set those parameters in the docker

compose file.

https://fiware-idm.readthedocs.io/en/latest/user_and_programmers_guide/application_guide/index.html#register-pep-proxy-and-iot-agents

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 52 of 126

Figure 39: Parameters needed to install more than one Wilma

4.2.6.6. Issues & Solution

Most of the problems with FIWARE Security modules are the provisioning of the application parameters on

Wilma. A simple test could allow to control everything works as expected.

Table 20: Issues related with Wilma

Authorization Basic

We authenticate against an application, we need 2 information for that application

 Client id

 Client secret

Then we can combine them to create the Authorization Basic token:

 base64(client_id:client_secret)

Access Token Request

POST /oauth2/token HTTP/1.1

Host: id.<pilot>.port-pixel.eu

Authorization: Basic <authorization basic token>

Content-Type: application/x-www-form-urlencoded

grant_type=password&username=<user email>&password=<user password>

user email and password have to be URL Encoded, the token is valid 1 hour. To refresh it you can

authenticate again, or use the refresh token.

Access Token Response

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 53 of 126

{

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"bearer",

 "expires_in":3600,

 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

}

Token Verification

curl https://id.<pilot>.port-pixel.eu/user?access_token=<access_token>
 {

 "organizations": [

 {

 "id": "13e88767-7473-472d-9c33-110c5bed2a57",

 "name": "test_org",

 "description": "my org",

 "website": null,

 "roles": [

 {

 "id": "9c4e8db4-a56b-4731-bfc6-7dd8fb2fbea3",

 "name": "test"

 }

]

 }

],

 "displayName": "My User",

 "roles": [

 {

 "id": "9c4e8db4-a56b-4731-bfc6-7dd8fb2fbea3",

 "name": "test"

 }

],

 "app_id": "ff03921a-a772-4220-9854-e2d499ae474a",

 "isGravatarEnabled": false,

 "email": "myuser@test.com",

 "id": "myuser",

 "authorization_decision": "",

 "app_azf_domain": "",

 "username": "myuser"

 }

Request A Resource Access

For example to access https://dal.<pilot>.pixel-ports.eu/orion/version

curl –H “X-Auth-Token: <access_token>” https://dal.<pilot>.pixel-ports.eu/orion/version

An HTTP 200 OK should be received, otherwise check the components logs to investigate

Refer to the official documentation for KeyRock, Wilma and AuthZForce.

4.3. Pilots Installation
To allow simple pilots installation, PIXEL proposes to install the full platform on only two host running

docker.

The full docker-compose are fully configured and only some small parameters have to be modified.

https://fiware-idm.readthedocs.io/en/latest/oauth/oauth_documentation/index.html
https://fiware-pep-proxy.readthedocs.io/en/latest/
https://authzforce-ce-fiware.readthedocs.io/en/latest/

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 54 of 126

4.3.1. Architecture

Figure 40: PIXEL Architecture diagram

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 55 of 126

4.3.2. How to install

4.3.2.1. Core Host

Table 21: Installation of the CORE Host

Installation of the CORE Host

Install docker and requirements

apt update

apt upgrade -y

apt-get install -y apt-transport-https ca-certificates curl gnupg-agent soft-

ware-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -

add-apt-repository \

 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \

 $(lsb_release -cs) \

 stable"

apt-get install -y docker-ce docker-ce-cli containerd.io

curl -L "https://github.com/docker/compose/releases/download/1.25.5/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

chmod +x /usr/local/bin/docker-compose

apt install -y git

echo "vm.max_map_count=262144" >> /etc/sysctl.conf

sysctl -w vm.max_map_count=262144

Retrieve the Core Archive

mkdir /opt/pixel

cd /opt/pixel/

GIT_SSL_NO_VERIFY=false git clone

https://gitpixel.satrdlab.upv.es/marc.despland/Installation.git

cd /opt/pixel/Installation/docker/core

Configure the scripts

vi .env

PUBLIC_HOST_IP=10.66.16.137

CORE_HOST_IP=10.12.182.193

PIXEL_DOMAIN=frbod.pixel-ports.eu

PIXEL_INTERNAL_DOMAIN=pixel.internal

Configure the secrets

Set all the secret files with random value.

A quick way to do it:

docker run -it --rm -v ${PWD}/secrets:/app/secrets pixelh2020/secrets:1.0.0

Network Security

./pixel-rules.install.sh

cp pixel-rules /etc/init.d

/etc/init.d/pixel-rules start

<check the rules before running the last commands>

update-rc.d pixel-rules defaults

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 56 of 126

Build the images

./build.sh

Install the containers

./install.sh

Initial configuration

./dal-provisionning.sh

> provisioning@1.0.0 start /app

> node index.js

Token : 99f4bf97-e915-417b-9285-09023905a491

Organization PIXEL : 96a7da6e-1bbc-4ee3-aee8-dacab079d485

Appli DAL NGSIAGENTS PROXY : 5ff34b1c-4e41-4b2e-9085-0f52b0b1c810

PEP Proxy password : pep_proxy_6c7b2771-1704-42c1-ab04-d8753401f3a2

PEP Proxy oauth_client_id : pep_proxy_5fe89b1c-4e41-4b2e-9085-0f52b0b1c810

Keyrock Done

Subscription created : 5ed36ccd502bffe0fedc6847

Inquisitor Done

You can run the build and install process as often you need. It is also used for updating the platform.

4.3.2.2. Public Host

Table 22: Installation of the PUBLIC Host

Installation of the PUBLIC Host

Install docker and requirements

apt update

apt upgrade -y

apt-get install -y apt-transport-https ca-certificates curl gnupg-agent soft-

ware-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -

add-apt-repository \

 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \

 $(lsb_release -cs) \

 stable"

apt-get install -y docker-ce docker-ce-cli containerd.io

curl -L "https://github.com/docker/compose/releases/download/1.25.5/docker-

compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

chmod +x /usr/local/bin/docker-compose

apt install -y git

Retrieve the Core Archive

mkdir /opt/pixel

cd /opt/pixel/

GIT_SSL_NO_VERIFY=false git clone

https://gitpixel.satrdlab.upv.es/marc.despland/Installation.git

cd /opt/pixel/Installation/docker/public

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 57 of 126

Configure the scripts

vi .env

PUBLIC_HOST_IP=10.66.16.137

CORE_HOST_IP=10.12.182.193

PIXEL_DOMAIN=frbod.pixel-ports.eu

PIXEL_INTERNAL_DOMAIN=pixel.internal

Configure the secrets

Set all the secret files with random value.

A quick way to do it:

docker run -it --rm -v ${PWD}/secrets:/app/secrets pixelh2020/secrets:1.0.0

Be careful with those secrets, use the result of dal-provisionning.sh on CORE

 sec_wilma_pub.password : PEP Proxy password

 sec_wilma_pub.proxy.username: PEP Proxy oauth_client_id

Network Security

./pixel-rules.install.sh

cp pixel-rules /etc/init.d

/etc/init.d/pixel-rules start

<check the rules before running the last commands>

update-rc.d pixel-rules defaults

Build the images

./build.sh

Generate the certificate

We need a wildcard certificate for the chosen domain.

Here we propose to generate it using Let's Encrypt

We choose to use *.<un/locode>.pixel-ports.eu

In order to generate it, you will need to contact UPV to create a DNS TXT Entry Here is the process for
*.frbod.pixel-ports.eu

cd /opt/pixel

mkdir LetsEncrypt

cd LetsEncrypt

docker run -it --rm $(PwD):/etc/letsencrypt --entrypoint certbot pix-

elh2020/certbot certonly --manual -m infos@pixel-ports.eu -d *.frbod.pixel-

ports.eu

cp live/frbod.pixel-ports.eu/fullchain.pem Installation/docker/public/frontrp/

cp live/frbod.pixel-ports.eu/privkey.pem Installation/docker/public/frontrp/

Install the containers

./install.sh

https://letsencrypt.org/

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 58 of 126

4.4. User’s Guide

4.4.1. PIXEL Data acquisition

DAL-Orchestrator and DAL-Proxy present a swagger-UI with their API documentation:

 http://<ip>:<port>/api-docs

For Orion, refer to the official documentation: https://fiware-orion.readthedocs.io/en/master/

4.4.1.1. NGSI Agents

NGSI Agents are the small software use to import data from external data sources into PIXEL through the

Data Acquisition Layer. We have 3 kinds of NGSI Agents:

 daemon: running as a server to received data

 scheduled: starts automatically at the given period

 manual: running only when asked

In order to run as an NGSI Agent your Docker container need some special configurations. Those

configurations are done using Docker LABEL that could be overwrite when deploying an agent on the

destination platform

In order to be identified the docker image of an agent has to contains specifics labels.

 Labels for all agents
o ngsiagent="pixel": this is the key label to be identified as a NGSI Agent

o ngsiagent.type="daemon": define the type of NGSI Agent daemon, scheduled or manual

o ngsiagent.datasources="[\"urn:pixel:DataSource:dummies\"]": this label provide the name of

the data source manage by this agent

o ngsiagent.datamodels="[\"/Dummies/minimal-schema.json\"]": this label provides the path to

each JSON Schema generate by the agent

The Data Models Path is the relative path to the specs folder of the Data Models repository.

For example, for the data model TideSensorObserved the label should set like this:

ngsiagent.datamodels="[\"/Pixel/TideSensorObserved/schema.json\"]"

 Labels for daemon agents
o ngsiagent.internal.port: the port exposing the API, it has also to be specified with ÈXPOSE

o ngsiagent.internal.path: the base path of the API configured in the agent

o ngsiagent.external.path: the base path of the API configured in the proxy to expose the agent

 Labels for scheduled agents
o ngsiagent.scheduled: the frequency to run the agent (CRON format)

* * * * * *

| | | | | |

| | | | | +-- Year (range: 1900-3000)

| | | | +---- Day of the Week (range: 1-7, 1 standing for Monday)

| | | +------ Month of the Year (range: 1-12)

| | +-------- Day of the Month (range: 1-31)

| +---------- Hour (range: 0-23)

+------------ Minute (range: 0-59)

 Examples
 Daemon

FROM nginx

LABEL ngsiagent="pixel"

https://fiware-orion.readthedocs.io/en/master/
https://gitpixel.satrdlab.upv.es/iglaub/Data_Models

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 59 of 126

LABEL ngsiagent.type="daemon"

LABEL ngsiagent.internal.port="80"

LABEL ngsiagent.internal.path="/api"

LABEL ngsiagent.external.path="/empire"

LABEL ngsiagent.datasources="[\"urn:pixel:DataSource:dummies\"]"

LABEL ngsiagent.datamodels="[\"/Dummies/minimal-schema.json\"]"

EXPOSE 80

ENV PIXEL=test

ENV MYTEST=pixel

RUN mkdir /usr/share/nginx/html/api

RUN echo "Execute order 66" > /usr/share/nginx/html/api/order

ENTRYPOINT ["nginx"]

CMD ["-g", "daemon off;"]

 Scheduled
FROM ubuntu

LABEL ngsiagent="pixel"

LABEL ngsiagent.type="scheduled"

LABEL ngsiagent.scheduled="* * * * *"

LABEL ngsiagent.datasources="[\"urn:pixel:DataSource:dummies\"]"

LABEL ngsiagent.datamodels="[\"/Dummies/minimal-schema.json\"]"

ENV PIXEL=test

ENV MYTEST=pixel

ENV SCHEDULED_DELAY=0

COPY docker_entrypoint.sh /docker_entrypoint.sh

RUN chmod u+rx /docker_entrypoint.sh

ENTRYPOINT ["/docker_entrypoint.sh"]

 Manual
FROM ubuntu

LABEL ngsiagent="pixel"

LABEL ngsiagent.type="manual"

LABEL ngsiagent.datasources="[\"urn:pixel:DataSource:dummies\"]"

LABEL ngsiagent.datamodels="[\"/Dummies/minimal-schema.json\"]"

ENTRYPOINT ["/bin/bash"]

CMD ["date"]

4.4.1.2. Quick start guide

NGSI Image management

For security purpose, right now you have to docker pull the NGSI Agents images directly on the host. A next

version will propose to manage that using the API.

You can request the list of available NGSI Agents images already available on the host with an API call:

curl -H "X-Auth-Token: default" http://172.17.0.1:8888/api/images

[

 {

 "id": "sha256:620877b976447800bc7ce8672d6b688369b429ad77afba0968f20088c8daf8fd",

 "tag": "pixelh2020/frbodtidesensor:1.0.0"

 }

]

Get a template

When you have chosen the image of your NGSI Agents, you can generate a template to create it
curl -H "X-Auth-Token: default"

http://172.17.0.1:8888/api/images/sha256:620877b976447800bc7ce8672d6b688369b429ad77afba096

8f20088c8daf8fd/template

{

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 60 of 126

 "name": "/?[a-zA-Z0-9_-]+",

 "image": "pixelh2020/frbodtidesensor:1.0.0",

 "type": "scheduled",

 "scheduled": "22 * * * *",

 "datasources": [

 "urn:pixel:DataSource:frbod:TideSensorObserved"

],

 "datamodels": [

 "/Pixel/TideSensorObserved/schema.json"

],

 "environment": [

 {

 "key": "PATH",

 "value": "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"

 },

 {

 "key": "NODE_VERSION",

 "value": "13.6.0"

 },

 {

 "key": "YARN_VERSION",

 "value": "1.21.1"

 },

 {

 "key": "NODE_TLS_REJECT_UNAUTHORIZED",

 "value": "0"

 },

 {

 "key": "ORION_URL",

 "value": "changeit"

 },

 {

 "key": "NAMI_AUTH_URL",

 "value": "https://nami.bordeaux-port.fr/?q=accueil"

 },

 {

 "key": "NAMI_URL",

 "value": "https://nami.bordeaux-port.fr/hauteurs"

 },

 {

 "key": "NAMI_LOGIN",

 "value": "changeit"

 },

 {

 "key": "NAMI_PASSWORD",

 "value": "changeit"

 },

 {

 "key": "FIWARE_SERVICE="

 },

 {

 "key": "FIWARE_SERVICE_PATH="

 }

]

}

Create the NGSI Agent

Change the name of the agent (it will be the name of the container) and adjust the parameters or let their

default values.

Be sure your name matches the given pattern.

curl -X POST -H "X-Auth-Token: default" http://172.17.0.1:8888/api/ngsiagent -d @- <<EOF

{

 "name": "/my-agent",

 "image": "pixelh2020/frbodtidesensor:1.0.0",

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 61 of 126

 "type": "scheduled",

 "scheduled": "22 * * * *",

 "datasources": [

 "urn:pixel:DataSource:frbod:TideSensorObserved"

],

 "datamodels": [

 "/Pixel/TideSensorObserved/schema.json"

],

 "environment": [

 {

 "key": "ORION_URL",

 "value": "http://172.17.0.1:1026"

 },

 {

 "key": "NAMI_LOGIN",

 "value": "mylogin"

 },

 {

 "key": "NAMI_PASSWORD",

 "value": "mypassword"

 }

]

}

EOF

4.4.2. PIXEL Information Hub

4.4.2.1. Importing Data Sources from DAL to Information Hub

When started, Information Hub (specifically, Orion Data Collector) subscribes to the DataSource entity type

in Orion Context Broker. The DataSource entities are managed by DAL Inquisitor and represent a registry of

data sources available in Orion Context Broker. When a new data entity is created in Orion, DAL Inquisitor

checks if the data source is already registered and creates a corresponding DataSource entity if needed.

Because Information Hub is subscribed to the DataSource entity changes, Orion sends a notification message

to the Information Hub’s listener and thus notifies the Information Hub that a new data source has been

created. The notification message contains the new DataSource entity.

Let us take as an example tide sensor data source. The type of Orion entity is TideSensorObserved (specified

by the type attribute) and the source ID is ‘FR_BOD:TideSensor’ (specified by the source attribute). A sample

entity is depicted below in keyValues (compact) representation:

Figure 41: Example of TideSensorObserved

The corresponding DataSource entity created by DAL Inquisitor looks as follows:

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 62 of 126

Figure 42: Entity created by Data Acquisition Layer

Each data source has a corresponding data model which is stored in Orion as a DataModel entity. The

DataModel entity specifies the schema of the data model. The schema is mandatory, a data source cannot be

imported to the Information Hub without it. A schema for the TideSensorObserved data model is depicted

below:

Figure 43: Schema for the TideSensorObserved Data Model

The schema is stored in Orion as a value attribute of a DataModel entity with an ID corresponding to the

Orion entity type (e.g. TideSensorObserved).

{

 "id": "<Orion type>",

 "type": "DataModel",

 "schema": {

 "type": "StructuredValue",

 "value": {<schema content>},

 "metadata": {}

 }

}

The DataModel entity for the TideSensorObserved Orion type is depicted below:

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 63 of 126

Figure 44: Orion Type for the TideSensorObserved Data Model

When registering a new data source, DAL Inquisitor creates in addition to the DataSource entity also a

SourceModelRelation entity which specifies the data model for the specified data source.

SourceModelRelation entity for the ‘FR_BOD:TideSensor’ data source is depicted below:

Figure 45: SourceModelRelation entity for the Orion entity

When Information Hub receives a notification from Orion about new data source, following steps are taken:

● IH reads the DataSource entity contained in the notification message and extracts source URN.

● using the source URN, IH queries the Orion and retrieves corresponding SourceModelRelation entity.

● IH extracts data model ID from the SourceModelRelation entity.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 64 of 126

● IH retrieves the DataModel entity with specified ID. If the DataModel entity is not available, import

of the data source will fail.

● IH extracts schema from the DataModel entity, parses it and retrieves referenced external schemas if

any.

● IH registers a data source type corresponding to the data model (Orion type) if not yet registered.

Name of the data source type matches the model name (which matches Orion type) where forbidden

character slash ‘/’ is replaced with colon ‘:’.

● IH registers a data source corresponding to the Orion source. Name of the source matches the Orion

source name (value of the source attribute of the Orion data entity) where forbidden character slash ‘/’

is replaced with colon ‘:’.

● IH imports data source initial data from Orion (data entities which are already stored in Orion).

● IH subscribes to the Orion source to receive notifications when new entities are created, or existing

ones modified.

To sum up, to import data source from DAL to Information Hub, following has to be done:

● prepare schema of your data model.

● create corresponding DataModel entity in Orion which contains the schema.

● insert data to Orion (i.e. create the first data entity).

● Information Hub will receive a notification that new data source has been created and automatically

register the data source and import initial data.

Note: if data model is not available at the time when data source is created (when first data entity is created),

importing data source to Information Hub will fail.

Data is stored to Elasticsearch index with the name obtained by concatenating following parts and separating

them with ‘-’ character:

● 'arh' prefix (Information Hub prefix).

● storage type (‘lts’ for long-term storage or ‘sts’ for short-term storage).

● source type ID in lower case.

Data for all sources of the same source type is stored to the same index. For example, data of type

TideSensorObserved (from all sources of this source type) is stored to the index with name ‘arh-lts-

tidesensorobserved’. The figure below depicts the Elasticsearch indexes created by Information Hub after

TideSensorObserved source has been imported:

Figure 46: Elasticsearch indexes

The figure below depicts the data record stored in Elasticsearch and presented in Kibana corresponding to the

TideSensorObserved entity used in the example above:

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 65 of 126

Figure 47: Register stored in elasticsearch

4.4.2.1.1. Data Flattening

Structured data (data with nested objects) is not supported by Information Hub and has to be flattened to flat

structure. The data flattening process is performed by the Orion Data Collector module of Information Hub

after retrieving from Orion. Data is stored to Elasticsearch in flattened form. When retrieving the data from

Information Hub using Data extractor API, flattened data is transformed back to the original form so the

whole process is transparent to the user.

Nested attributes (single and multi-level) are flattened to a flat list of attributes using the dot separator. For

example, the EnvironmentalKeyPerformanceIndicator Orion entity depicted in figure below as it is returned

by Orion in keyValues format contains two nested attributes - calculationPeriod and organization. These two

attributes are transformed to three attributes: ‘calculationPeriod.from’, ‘calculationPeriod.from’ and

‘organization.name’. The resulting data record is depicted in the figure below as it is shown in Kibana.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 66 of 126

Figure 48: Resulting data stored

Figure 49: Resulting data shown in Kibana

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 67 of 126

4.4.2.2. Retrieving Data from Information Hub

Data Extractor module of Information Hub provides a REST API for retrieving information about registered

data sources and source types, retrieving time-series data from a selected data source using specified filters.

Data Extractor API is available by default at the following endpoint:

http://<IH_HOST>:8080/extractor/

4.4.2.2.1. Retrieving List of Registered Sources

To retrieve a list of all registered data sources in Information Hub, use the ‘GET /sources’ operation. The

response contains list of data sources and for each source following attributes:

● sourceId: source ID.

● sourceTypeId: ID of corresponding source type in Information Hub.

Figure 50: List of sources with their attributes

4.4.2.2.2. Retrieving Info about Specific Source

To retrieve detailed information about a specific data source, use the ‘GET /sources/{sourceId}’ operation.

The response contains following attributes:

● sourceId: source ID

● sourceTypeId: ID of corresponding source type in Information Hub

● model: data model name

● orionSourceId: originating Orion source

● archived: boolean value specifying whether source data is being archived (stored to Elasticsearch)

● collected: boolean value specifying whether source data is being collected by the Data Collector

Figure 51: Detailed information about a specific data source

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 68 of 126

4.4.2.2.3. Retrieving List of Registered Sources Types

To retrieve a list of all data source types in Information Hub, use the ‘GET /sourceTypes’ operation. The

response contains list of data source types and for each source type following attributes:

● sourceTypeId: data source type ID.

● model: data model name.

● collectorType: type of Data Collector used by Information Hub to collect data from source of this

source type (e.g. Orion Data Collector, AIS Data Collector).

Figure 52: List of all data source types in Information Hub

4.4.2.2.4. Retrieving Info about Specific Source Type

To retrieve detailed information about a specific data source type, use the ‘GET /sourceTypes/{typeId}’

operation. The response contains following attributes:

● sourceTypeId: data source type ID.

● fields: list of fields of this source type. For each field following attributes are provided:

○ name: name of the field.

○ primaryDataType: primary data type of the field.

○ secondaryDataType: secondary data type of the field. If a field value is an array, the primary

data type is ‘array’ and the secondary data type specifies the type of array values.

○ collected: boolean value specifying whether this field is being collected by the Data Collector.

○ searchable: boolean value specifying whether this field is indexed for search by Elasticsearch.

● model: data model name.

● schema: data model schema content.

● collectorType: type of Data Collector used by Information Hub to collect data from source of this

source type (e.g. Orion Data Collector, AIS Data Collector).

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 69 of 126

Figure 53: Retrieving Info about a Specific Source Type

4.4.2.2.5. Retrieving Time-Series Data

To retrieve data for a specific data source in a specific time interval, use the ‘POST /data’ operation. The

query is specified in the POST body and can contain following parameters:

● sourceId (mandatory): ID of the source.

● fields (optional): list of fields to return.

● filters (optional): list of filters to apply. A filter is specified as an object with following three attrib-

utes:

○ fieldname.

○ condition: possible values are equal, notEqual, equalOrGreater, equalOrLower, greater, low-

er

○ value.

● timeIntervals (optional): array of time intervals for which to return data (applies to the timestamp at-

tribute - time when record was stored to the IH).

● storageTypes (optional): storage types to include in the search. Possible values are STS (short-term

storage) and LTS (long-term storage).

Data can be returned in JSON or CSV format. Requested format can be specified using Accept HTTP header

and appropriate MIME type:

Accept: application/json | text/csv

If Accept header is not specified, data is returned in JSON format.

The figure below depicts a query for retrieving tide sensor measurements from ‘FR_BOD:TideSensor’ source

with name, observed, water height and water height fields where water height value is greater than 400.

Requested data format is JSON.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 70 of 126

Figure 54: Retrieving Time-Series Data

4.4.2.2.6. Retrieving latest data record for each sensor

To retrieve the latest data record for each sensor of a specific data source, use the ‘POST

/query/latestCollapseByField’ operation. The query is specified in the POST body and can contain following

parameters:

● sourceId (mandatory): ID of the source.

● collapseField (mandatory): field name containing the sensor identifier.

● timestampField (mandatory): field name containing the timestamp of sensor values.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 71 of 126

Figure 55: Latest data record for TideSensor

4.4.2.3. Elasticsearch Proxy Service

Information Hub provides a proxy service directly to Elasticsearch REST API which is intended for dealing

with data that does not originate from the DAL, i.e. to read and write results of models and predictive

algorithms. Primarily it will be used by Operational Tools, PIXEL dashboard and models. Besides that, it

enables users to make more advanced queries directly to Elasticsearch REST API.

Access to Elasticsearch is restricted. Only read access is allowed to index created and managed by

Information Hub (indexes with ‘arh’ prefix). Models are allowed to create their own indexes and have full

access to them.

Note: nested data from the DAL is stored to Elasticsearch by Information Hub in flattened form. When

retrieving it through Elasticsearch proxy service it is not unflattened - you get it in flattened form. On the

other hand, if you use Data Extractor API, Data Extractor takes care for transforming data to the original form.

Elasticsearch is available by default at the following endpoint:

http://<IH_HOST>:8080/proxy/

The figure below depicts a simple call of Elasticsearch REST API using curl tool:

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 72 of 126

Figure 56: Call of Elasticsearch REST API using curl

4.4.2.4. Information Hub Management Console

4.4.2.4.1. Overview

The Information Hub Management Console is a desktop application developed in the Java programming

language on top of the JavaFX platform. It is distributed in the form of a JAR file packed into a ZIP package

together with the configuration file. For installation and configuration refer to the Installing Information Hub

Management Console chapter. The application provides graphic components for controlling, configuring and

monitoring the Information Hub. It is intended for system operators that configure and monitor the operation

of Information Hub, including:

● configuring connections to storage services,

● selecting data sources for collection and storage,

● setting up data reduction and deletion,

● managing Data Worker Group components,

● monitoring storage capacities,

● monitoring the data flow and reduction,

● monitoring system notifications and errors,

● loading and storing the system configuration,

● triggering system maintenance.

The application can be graphically divided into three main areas: Menu area, Content area and Status area.

The Menu area contains buttons for choosing the topmost displayed panel inside the main Content area,

displaying GUI elements for controlling and monitoring the Information Hub. The ‘Refresh’ button reloads

information in the currently opened panel by requesting it from relevant controllers.

The available content panels are:

● Overview: also shown when the application starts, it serves as a general display for showing system

notifications, machines, instances and their status.

● System: displays information about the machines in the Information Hub and their resources.

● Instances: displays tables listing instances of each type, together with their main status. By clicking

on the drop-down arrow in the ‘Instances’ button, it is also possible to open more detailed panels spe-

cific to each instance type.

● Sources: displays information about the various data sources in the system and enables their configu-

ration.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 73 of 126

● Storage: using the dropdown arrow, it is possible to access panels detailing the Short-Term Storage,

Long-Term Storage, Data Broker storage, reduction processes and algorithms. The default display

(when clicking on the button) is the Short-Term Storage.

● Extraction: details about clients using the extractor instances, with the ability to block or limit their

bandwidth.

● Notifications: displays lists of recent system and client notifications.

● Settings: access to GUI and connection settings, a panel for loading or storing the Information Hub

configuration and a panel for toggling system maintenance mode, all accessible through the dropdown

arrow. By default, the Connection settings panel opens with a click of the button.

The Status area located at the bottom of the application window contains an always visible display of the most

recent error or warning message and a status marker, showing the severity (red for error, yellow for warning

and green for normal) of the client application or the Information Hub. The ‘Expand’ button expands the

status area to show several notification items instead of just one. The ‘Show log’ button opens the client

notifications panel, showing the complete list of recent messages (available also through the ‘Notifications’

menu button). On the right-hand side of the Status area most recent client notification is displayed along with

its status colour. If no relevant client notifications are available, the message displays "Client is synchronized

with the system".

4.4.2.4.2. Overview View

The Overview menu button opens the Overview view as depicted in figure below, this panel is also the

default view when management console is started:

Figure 57: Information Hub Operation Overview

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 74 of 126

The panel contains following three sub-panels:

● System events: shows list of recent system notifications. The colour of the status light on the left in-

dicates errors (red), warnings (yellow) or info (green) messages. The time on the right indicates when

the message was generated in the system. By hovering over the messages, detailed information can be

viewed. By clicking on them, the Notification panel will open.

● Machines and instances: show list of registered machines or Docker instances that are running ser-

vices from the Data Worker Group.

● Sources and source types shows list of registered source types, a source type can be expanded to

show all sources of that type.

4.4.2.4.3. System View

The ‘System’ menu button opens the System view as shown in the figure below:

Figure 58: System View

The left-hand side sub panel displays a list of machines or Docker instances in Information Hub. Clicking on a

specific machine displays its detailed information in the right-hand panel. For each machine, a button is

displayed for each available service instance: collector (C), writer (W), reductor (R) or extractor (E). The

colour of the letter indicates the instance status: green for normal operation, red for errors and other events

that need intervention, yellow for services on standby, white for disabled and black for shut down instances.

Clicking on the buttons opens a detailed configuration pane for the corresponding instance.

The right-hand side sub panel consists of following three tabbed panels:

● Machine information: displays machine system resources (number of CPUs, total and used RAM,

the maximum and used file descriptors of the selected machine, as reported by the services running on

the machine), graph of the machine CPU load (100% means full processing of all CPUs) in the last

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 75 of 126

three minutes, graph of the machine memory usage in MB in the last three minutes, as reported by the

Java processes of services running on the machine.

● Components and resources: display Process load and User memory graphs for the selected machine.

The Process load graph is a combined graph of process loads of every service running on the machine

(100% means full processing on all CPUs). The User memory graph is a combined graph of memory

usage of every service running on the machine (collector, writer, reductor, extractor and proxy ser-

vices). It displays the used process memory (in MB) as reported by the instance Java processes.

● Data flow: displays Data flow and Records flow graphs. The Data flow graph shows the cumulative

source data being processed by the instance in KB/s. The Records flow graph shows the cumulative

number of records being processed by the instance every second.

4.4.2.4.4. Instances View

The Instances view displays a list of worker instances categorized by the type of service (generic

components, writers, extractors, proxies and reductors). Each table contains following columns:

● Id: the internal machine ID as stored in the system. Usually equal to the hostname, but it may be mod-

ified in settings.cfg files for running several instances of the same type on one machine.

● Hostname: the hostname of the machine as reported by the service Java process.

● Enabled: checkbox that allows quick toggling whether an individual instance is enabled or not (the

Java process of a disabled instance is still running, but performs no processing and work is delegated

to other instances of the same type).

● Active: a passive checkbox that shows if the Java process of this particular instance is active and the

instance is connected to the Configuration Service.

●

Status: the current status of the instance. Possible values are: OK (service is enabled and active), DISABLED

(service is disabled and not active), NOT_RUNNING (service is enabled but not active), STANDBY (service

is active but not enabled), ERROR (service encountered an error), WARNING (service is running, but

encountered an abnormal event).

Figure 59: Instances View

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 76 of 126

4.4.2.4.5. Sources View

The Sources view displays a list of all registered sources and source types, details for selected source or

source type and enables you to configure selected source or source type. The figure below shows the Sources

view when a source type is selected:

Figure 60: Sources View

The left-hand side panel shows a tree view of all registered source types. A source type can be expanded to

show sources corresponding to that source type. Buttons on the right-hand side of source rows open the

configuration of the corresponding instance. The colour of the letter indicates the status of the instance: green

for normal operation, red for errors and other events that need intervention, yellow for services on standby,

white for disabled and black for shut down instances.

The tree view can be filtered using the filter text box. Buttons for registering new source type and new source

are not used in case of sources originating from Orion because registration is done automatically based on the

notification from Orion. Delete button triggers deletion of selected items in the tree view. Source Types can be

deleted with it as well, but its children need to be deleted first. Sources cannot be deleted if they are currently

being collected.

The panel on the right-hand side displays details about the selected source type. Source type name can be

modified using the provided text box. ‘Collect source data’ checkbox allows enabling or disabling of data

collection for all child sources at once. The ‘Apply’ button needs to be clicked to commit the change. The

‘Archive source data’ button allows enabling or disabling of archival for all child sources at once. Archival

means that source data is stored to Elasticsearch.

The figure below shows the management console when Fields tab is selected:

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 77 of 126

Figure 61: Management Console when Fields tab is selected

The Fields tab shows all fields of the selected source type. The table has following columns:

● Field name.

● Primary data type.

● Secondary data type: if primary data type is ARRAY, this defines data type of the contained elements.

If the primary data type is scalar, the secondary type is empty.

● Collected: the checkbox enables or disables the collection of the field. It will still be collected from

the source, but will be excluded by the Data Collector from passing it on to subsequent stages of pro-

cessing.

● Archival type: defines how the field will be treated by the Information Hub.

The figure below shows the Sources view when a source is selected in the left-hand sub panel:

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 78 of 126

Figure 62: Management Console when Source is selected

The Configuration tab consists of three sections. The Basic configuration section displays basic information

about the source and following two checkboxes:

● Collect source data: if enabled, the source will be processed by a Data Collector instance (if availa-

ble).

● Archive source data: if enabled, the source will be processed by a Data Writer instance (if available),

i.e. stored to Elasticsearch.

The Statuses and instances at different stages of processing section shows if data from the Source is

correctly processed in each of the stages: collection, archival and reduction. If processing is enabled and

without errors, it shows the names of the corresponding instances that are processing the Source data.

The Filters section allows to set filters that will be used to configure the data source and filter the data

received from it (does not apply to Orion data source).

The figure below shows management console for selected data source when Monitoring tab is selected:

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 79 of 126

Figure 63: Management Console when Monitoring is selected

The Records flow graph shows the number of records from the selected source being processed by

Information Hub. The Data flow graph shows the bandwidth of data (in kB per second) from the selected

source being processed by Information Hub.

4.4.2.4.6. Storage View

The Storage view enables you to configure short-term and long-term storages and reduction algorithms. Its

capabilities exceed the needs of sources originating from the DAL, so we will not go into more details.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 80 of 126

Figure 64: Storage View

4.4.2.4.7. Extraction View

The Extraction view enables you to manage connected clients of Data Extractor instances. The panel on the

left-hand side displays a list of clients that have been requesting data from Data Extractor instances. The right-

hand side panel displays following information about the selected client:

● IP and hostname of the client.

● Client blocked: if checked, the client will be prevented from issuing requests to Data Extractor in-

stances and will instead receive a 403-error message "You have no access".

● Maximum bandwidth allowed: if the client issues larger requests, their data flow will be limited to the

specified bandwidth (in kB per second). The "Apply" button needs to be clicked to commit the set-

ting.

● Client data flow: graph showing the recent data flow in kB per second from a Data Extractor instance

to the selected client.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 81 of 126

Figure 65: Extractions View

4.4.2.4.8. Notifications View

The Notifications view displays the system and client (administration console) notification messages. Using

the buttons on the top you can switch between the lists of system and client notifications.

The left-hand panel displays a list of notifications which includes a short notification message, the message

severity (red for errors, yellow for warnings and green for info messages) and the timestamp when the

notification was generated. By clicking on any message, more detailed text (if available) is shown in the right-

hand panel.

The filter box on the bottom of the left panel allows filtering of notifications by limiting the list to display

only items that contain the entered text.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 82 of 126

Figure 66: Notifications View

4.4.2.4.9. Settings View

The Settings view shows various configuration options for configuring Information Hub and management

console. The Connection Settings panel depicted in figure below contains following elements:

● broker URL: address of the message broker (Apache Kafka) which is used for communication

among Information Hub components. The address should be specified in the form <IP or host-

name>:<port>.

● STS URL list: connection settings that are used by Data Writer, Data Extractor and Controller com-

ponents to connect and exchange data with the short-term storage. The list contains addresses of the

Short-Term Storage cluster nodes. The addresses should be specified in the form <IP or host-

name>:<port> and the list items separated by a comma.

● STS cluster name: name of the short-term storage cluster, shared between all nodes.

● LTS URL list: connection settings that are used by Data Writer, Data Extractor and Controller com-

ponents to connect and exchange data with the long-term storage. The list contains addresses of the

long-term storage cluster nodes. The addresses should be specified in the form <IP or host-

name>:<port> and the list items separated by a comma.

● LTS cluster name: name of the long-term storage cluster, shared between all nodes.

● Filesystem storage mount point path: when storing Source field data in binary form, this is the path

in the filesystem that should be used for storing the binary data blocks. The binary storage system

should therefore be mounted to this path on all Data Collector, Data Extractor and Data Proxy host

machines.

● Commit connection settings: apply all changes from the input fields above.

● Status update interval settings: set how often services of each type send status messages. Conse-

quently, affects the update frequency of all monitoring graphs in the GUI.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 83 of 126

Figure 67: Settings View

4.4.3. PIXEL Operational Tools

4.4.3.1. Backend Interface

The Operational Tools are able to publish models, predictive algorithms and schedule them. Furthermore,

there is also support for KPIs and events. The API has been specified as a REST API that includes a Swagger

(Open API) interface to be tested. You can also use other developer tools such as Postman. The Swagger UI is

very user friendly and allows to easily check all possible requests, its input parameters and the outputs. We

will just provide a basic example for a dummy model in order to highlight the process, which should be

considered as a scheme for all other requests (analogous process).

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 84 of 126

Open a web browser and go to http://your-server-ip:8080/otpixel/doc you should be able to see the Swagger

UI of the application. Click first on Authorize, and enter your apiKey.

Figure 68: OT Swagger UI authentication

At the very beginning after installing the OT component, there is no data in Mongo (database), therefore any

request will return an empty response. We will take as an example the 'models' resource. Click on /models/list

and the options will expand.

Figure 69: OT Swagger UI (list models). Empty response

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 85 of 126

Note here some optional parameters to be included in the request:

 otStatus: status of the models to be retrieved, which can be one of: created, deployed, error, deleted.

If not given, all are provided.

 type: type to be considered: model, pa. If not given, all are provided.

Note also that you have an example of a CURL request. Finally, note that the response is an empty array as

there are (yet) no models there.

To create a new one. Click on models/create and the options will expand.

Figure 70: OT Swagger UI (create model)

You can see a really complex body, but do not worry because there is no need to understand all info. You can

just insert as body the following JSON (we will use a dummy model):

{

 "dockerInfo": {

 "dockerName": "pixelh2020/dummysei:0.1",

 "label": "getInfo"

 }

}

After pressing the Execute button, you should see the following response:

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 86 of 126

{

 "id": "5ed7784971409d0623b6c57a",

 "generalInfo": null,

 "dockerInfo": {

 "dockerName": "pixelh2020/dummysei:0.1",

 "label": "getInfo",

 "dockerRepo": null

 },

 "creation": 1591179337033,

 "otStatus": "created"

}

Right now, the model has been created in the Operational Tools. A backend process will retrieve the Docker

image from Dockerhub and extract all description information. We can see this if we list the models again:

Figure 71: OT Swagger UI (list models). Model example response

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 87 of 126

You can see now all information related to this model that has been imported through Dockerhub.

Other additional CRUD operations related to models are straightforward: deleting a model, updating a

model, getting a model (by UUID).

The process with other resources (instance, scheduledInstance and KPI) is also straightforward in terms of

CRUD operations. The KPI includes two additional functions:

- /kpis/get/{id}/lastKPI: Gets the last value of a KPI by id. It is supposed that the KPI is a time series

changing throughout time. This data is stored in the Information Hub (Elasticsearch).

- /kpis/get/{id}/stats: Gets statistical info from a KPI between a given time interval (optional), such as:

min, max, average and std. It also includes an array of KPI values (this is useful for the dashboard to

print them on a graph).

4.4.3.2. Graphical User Interface

The Operational Tools include a small basic UI that supports most of the functionalities of its API. It may

serve as basis for your own development in case you intend to make your own project only considering this

component of the PIXEL architecture, though the PIXEL Dashboard is intended to provide much more

options and functionality.

4.4.3.2.1. Models

Creating a Model

If you want to create a new model, just click on the main (left) panel on Models. You should see a list of

already published models, unless it is a fresh installation.

Figure 72: Add a Model (Step 1)

Just click on Add a New Model. A basic form will appear asking for the name of the model in your Docker

repository as well as the label where all descriptive information is included (also in the Docker image). If you

do not have one by your side available, you can follow the process with a dummy example. Just enter the

following values:

Figure 73: Add a new model (Step 2)

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 88 of 126

As you may deduce, pixelh2020 is an open (public) repository in Dockerhub, dummysei:01 is the name and

version of the Docker image to be used, and getInfo is the included label in the Docker image that described

the model with a specific format defined in PIXEL. In a certain way, it is similar to a WSDL for web services.

The web form also includes the option to point to a private Docker repository, in that case, you will have to

enter the credentials to access.

After clicking the Save button on the top right corner, you will see the model on the list as created:

Figure 74: OT GUI. Add a new model (Step 3)

Note that there is still no name nor category for the model, as it needs to be first obtained (pulled) from the

Docker repository. You can track this activity by monitoring the

/var/log/tomcat8/otpixelEngineCreateModel.log file:

Figure 75: Log4j file for monitoring the creation of models

Now, if you refresh your browser, you should see that model has changed its status to deployed. Now there is

a name and a category, which has been extracted from the given label of the Docker image.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 89 of 126

Figure 76: OT GUI. Add a new model (Step 4)

You should have noticed a list of actions represented by 4 icons: edit, delete, run and schedule. Clicking on

the Edit Model icon will allow you to see the complete description of the model. We will not discuss the

format, but basically it describes basic fields, connectors, inputs, outputs and logging configuration.

Figure 77: OT GUI. Edit information from a published model

By clicking on the Delete Model icon, the model enters a deleted status. After a short while, if you refresh the

browser the model will have disappeared. The other options (run, schedule) are commented on the next

subsections

Running a Model

Once you have published and deployed a model (see previous step), you should be able to run the model. For

that, just click on the Run model action button, and you should see a new page with a list of executions

associated to that model. After a fresh installation, there will be no item in the list.

Figure 78: OT GUI. Create a new instance to run a model (Step I)

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 90 of 126

We can create a new execution by clicking on the New Instance button. A modal dialog appears where you

will have to enter a JSON file describing the details of the execution.

Figure 79: OT GUI. Create a new instance to run a model (Step 2)

The introduction of data here is a particularization of the description of the model, with specific inputs and

outputs, and varies from model to model. You should look at the specific model to enter valid data here. Once

you do, just press the Save button in the modal. The new instance appears in the Menu with status created.

Figure 80: OT GUI. Create a new instance to run a model (Step 3)

There is a backend process that periodically reads this table and runs the pending instances. You can track this

activity by monitoring the /var/log/tomcat8/otpixelEngineCreateInstances.log:

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 91 of 126

Figure 81: Log4j file for monitoring the creation of instances

After the execution, if you refresh your browser, you will see the details of the execution (instance) in the list.

Figure 82: OT GUI. Create a new instance to run a model (Step 4)

Here you have two action icons. The Delete instance is obvious, whereas the View instance allows

visualizing the details of the instance. It is pretty much the same as the input data provided when the instance

was created, with some additional information added by the backend process (creation time, start, otStatus,

dockerId). Note that the result of the execution is stored in Elasticsearch; the visualization of such result is

model dependent as is provided by the PIXEL Dashboard.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 92 of 126

Figure 83: OT GUI. Create a new instance to run a model (Step 5)

Scheduling a Model

Some models are useful every day, every week, etc., and can be run automatically (scheduled), without any

reason for user presence. The process of scheduling a model is analogous to the previous one (running a

model), just click on the Schedule model action icon of the models list and you should be able to follow a

similar process.

Figure 84: OT GUI. Create a new scheduled instance to run a model

The only difference here resides in the fact that the model is going to be launched periodically in this case, not

just once. Therefore, when we enter the JSON data of a scheduled instance, we need to include such data,

which follows the structure:

"scheduleInfo": {

 "start": 1546300800,

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 93 of 126

 "unit": "minute",

 "value": 1

 }

The start field indicates (Unix time) when the model must be first launched, the unit filed represents the

possible units (second, minute, hour, day) and the value field represents the number of units to wait between

consecutive executions. In the example above, model will be run every minute.

The given start time should typically represent one timestamp in the future. However, if the given start time is

any time in the past, the OT engine will recalculate the nearest point of time in the future as result of the N-th

multiple of the given amount of time (here multiples are count every minute).

You can trace the backend process that periodically reads the corresponding table and runs the pending

scheduled instances. The log is on /var/log/tomcat8/otpixelEngineCreateScheduledInstances.log:

Figure 85: Log4j file for monitoring the creation of scheduled instances

Now in the list of scheduled instances you should see the added scheduled instance. The Last status column

should say running, unless there is an error (error trying to execute the Docker instance) in any of the

executions.

Figure 86: OT GUI. Create a new scheduled instance to run a model (II)

There is one final comment and relates to timing issues. If one of the inputs for the execution of the model is a

time dependent parameter, e.g. current day of the execution, then this should be parametrized and

interpreted by the OT engine. The user cannot provide here a fixed timestamp (otherwise this would provide

the same result continuously). As example, suppose a model that requires as inputs a start time and an end

time to make its internal calculation; this could be the case of getting vessels calls in a time window. If we

want to run the model every day, then we need to parametrize this somehow in the JSON data structure. An

example could be:

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 94 of 126

{

 "name": "start",

 "type": "datetime (Unix time)",

 "description": "start of calculation period",

 "value": "${DATE_DAY_init}"

}, {

 "name": "end",

 "type": "datetime (Unix Time)",

 "description": "end of calculation period",

 "value": "${DATE_DAY_last}"

}

Here, every time the model is executed, the OT engine previously interprets the parametrized date values

(${}) and changes it with the corresponding operation. Currently the OT engine supports the following ones:

Table 23: Time parametrization options supported by the OT engine

FORMAT Description (Unix format -millis) Potential Use

${DATE_current} Current date Models started by triggers?

${DATE_DAY_init} Date of the first second of the current day PAS

${DATE_DAY_last} Date of the last second of the current day PAS

${DATE_WEEK_init} Date of the first second of the current week PEI

${DATE_WEEK_last} Date of the last second of the current week PEI

4.4.3.2.2. Predictive Algorithms

The management of predictive algorithms is completely analogous as for models in the previous section. Note

that even the format (when invoking the API) is the same.

4.4.3.2.3. KPIs

Key Performance Indicators (KPIs) are special indicators set by port operators (it may differ from port to port)

to better track, qualify and quantify the performance of their operations. The Operational Tools allow to create

such KPIs, as long as they refer to specific data available in the Information Hub (Elasticsearch).

The data in the Information Hub has to comply with the KPI data model as defined by FIWARE (see

https://fiware-datamodels.readthedocs.io/en/latest/KeyPerformanceIndicator/doc/spec/index.html for further

information). Some fields of the model are mandatory, other are optional. For PIXEL we will potentially add

new fields that include specific information (e.g. PEI).

In order to create a KPI at OT level, just click on the KPIs from the Left Menu. You should see a list of

available KPIs (or an empty list, if it is a fresh installation).

https://fiware-datamodels.readthedocs.io/en/latest/KeyPerformanceIndicator/doc/spec/index.html

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 95 of 126

Figure 87: OT GUI. Create a new KPI (Step 1).

Click on the Add a new KPI button and a new modal will appear where you will have to enter the JSON

description of the KPI. This is a representation of the data already available in the Information Hub; therefore

the format is here not the FIWARE data model. A possible example will be the following:

Figure 88: OT GUI. Create a new KPI (Step 2).

Important fields to comment here are:

 indexRef: this refers to the Elasticsearch index to search for the info.

 idRef: the identifier of the specific KPI within the Elasticsearch index.

 category: associated category to classify your KPIs. Currently only environmental and operational

have been identified as main categories.

 kpiThresholds: a set of thresholds (upper and lower) associated to this KPI. This is optional, but may

allow later monitoring of KPIs, visualization and possible alarms.

After clicking on the Save button, you will see that the KPI is inserted in the list

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 96 of 126

Figure 89: OT GUI. Create a new KPI (Step 3).

Similar to the models, here there is a set of actions icons you may use:

 The Edit icon will show you the description of the KPI (similar to the JSON structure given at

creation time).

 The Delete icon allows you to delete the KPI. Here you are only deleting the KPI at OT level, the data

is still available in the Information Hub, there is no deletion of data in Elasticsearch.

 The Show details icon allows you to inspect the content of the KPI that means, to retrieve the

information from the Information Hub (Elasticsearch). In the Figure below you can see an example

for the created KPI. The OT retrieves the information from the last KPI in Elasticsearch, as it is

supposed to be a time series. Note that this structure is compliant with the FIWARE KPI data model.

As there are several time fields in the JSON structure, the time field used for retrieving the last KPI is

calculationPeriod.from (but you may change it at code level).

Figure 90: OT GUI. Create a new KPI (Step 4).

 Finally, the Show trends icon allows to retrieve some trends of the given KPI (the API also supports

an optional timeframe). The OT will provide some statistical info about the KPI values throughout

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 97 of 126

time: mean standard deviation, max and min, as well as the set of KPIs as JSON structure for potential

representation (this is offered in the Dashboard, not in this GUI). The Figure below represents an

example for the created KPIs. Looking at the statistical info, one can easily deduce that the value has

not change across time.

Figure 91: OT GUI. Create a new KPI (Step 5).

4.4.3.2.4. Event Detection

There is no UI developed specifically for this purpose and it is considered further work. This is caused

because this functionality at user level is offered via the PIXEL Dashboard. The reason for that is because

both the Operational Tools and PIXEL Dashboard use a common element for alerting and notification based

on ElastAlert.

4.4.4. PIXEL Integrated Dashboard and Notifications

Although the PIXEL platform has 5 components, users interact with it through the dashboard user interface.

The PIXEL Dashboard and Notification component provides a web User Interface to interact with the

platform.

It is needed to have an account to access to the platform.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 98 of 126

Figure 92: Platform User Interface

4.4.4.1. Login

After entering the URL of the PIXEL platform, a login form appears allowing you access the application.

You need to have an account to enter into the application. Depending on your permissions you will have

different functionalities available.

Figure 93: Login page

4.4.4.2. Layout

The PIXEL platform has 3 main areas:

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 99 of 126

1- Menu: Provides access to different functionalities.

2- Header: Provides navigation and configuration properties.

3- Content: Provides the functionalities to interact with.

Figure 94: Layout

Header

The header provides a set of functionalities to navigate between different sections, search elements, language

selection and profile information.

On the left-hand side, you will find the following functionalities:

- Condense / Extend menu.

- Breadcrumbs.

- Functionality button bar.

Figure 95: Header components

On the right-hand side, you will find the following functionalities:

1- Search functionality.

2- Language Selection.

3- Profile options.

4- Profile Details.

5- Logout.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 100 of 126

Figure 96: Header configuration options

Menu

The menu allows the user to access all the available functionalities of the platform.

By default, the menu appears in extended mode, but it can be extended through the compact / extend icon.

Figure 97: Extended /compact menu

The functionalities available are:

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 101 of 126

Table 24: Dashboard Functionalities summary

Name Description

Overview List of information visualization to control port operations

Views Manage the visualizations to be shown in the overview functionality

Dashboard Manage the creation of reports

Permission Manage the roles and uses of the platform

PAS Information Manage the Port Activity Scenario information

MAP Geographical information system with real-time sensors

Alerts Manage alerts definition and subscription

Operational Tools Manage Models and Algorithms

Content

The content area is the largest display area and shows the content of the functionality selected in the menu.

At the top (Figure 98: Different content sections), there is a tab bar that allows quick access to previously

opened content (1, 2, 3).

Figure 98: Different content sections

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 102 of 126

4.4.4.3. Permission

The permission functionality allows you to manage the roles and users of the platform. This functionality uses

internally the security layer of PIXEL.

4.4.4.3.1. Role permission

The role permission functionality allows managing the roles of the platform “the different types of users that

will use the platform and what actions they can execute”.

This functionality will only be available to administrators.

The list of roles shows the roles defined and provides the functionality to manage them (Create, Edit, Delete).

Figure 99: List of roles

If you want to create a new role, select the "New role" button. After selecting the button, a form appears that

allows defining the characteristics of the new role.

Figure 100: Create a New Role

4.4.4.3.2. Users

The user functionality allows managing the users that can access to the platform. The list of users provides a

list of users created.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 103 of 126

Figure 101: List of users

If you want to create a new user, select the "New user" button. After selecting the button, a form appears that

allows defining the properties of a new user.

Figure 102: Create new user

4.4.4.4. Overview and Views

These functionalities allow defining and showing the most suitable visualizations to monitor the port activity

depending on the specific needs of each port.

Note: Most of the visualizations that a user can create are related with model executions. Before creating these

visualizations, the user has to add a model and run it form the operational tools functionality.

4.4.4.4.1. Views

List of Views - Visualizations

From the list of views, the user can manage the most appropriate visualizations to control the port activity.

The list of views provides a search mechanism (1) to filter by name, source or type the views showed in the

table. The Add (2) button allows creating a new visualization. (3) Shows a list of the different visualizations.

For each visualization (4), the user can change the visualization status. Only the enabled visualization will

appear in the overview.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 104 of 126

Figure 103: List of visualizations

Create a new view for and specific model

The add visualization functionality has three steps.

- 1
st
 Step: the user chooses the model for which he wants to create a new visualization. Currently the

platform provides visualization for the PAS model and for the Predictive ETD algorithm. Moreover,

the user can create a custom visualization.

Figure 104: Create Visualization - Step 1

- 2
nd

 Step: In the second step, the user chooses the visualization most appropriated for the analysis he

wants to perform.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 105 of 126

Figure 105: Create Visualization - Step 2

- 3
rd

 Step: In the third step, the user defines the name of the visualization and selects the proper model

execution to be shown.

Figure 106: Create Visualization - Step 3

Process of creating and visualizing a new view

To show a new visualization on the overview, you need to follow these steps:

1. In the list view, click the add button.

2. Complete the three steps for creating a new visualization.

3. Look for the visualization created.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 106 of 126

4. Change the status from disabled to enabled.

Figure 107: Create Visualization Process

Create a new custom view

If a user wants to create a custom visualization, independent from any model, in the process of creating a new

visualization, the user has to select the custom option in the step 1. In the next figure, you can see how a user

can create a custom visualization to show in an iframe the content of another web.

Figure 108: Custom Visualizations

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 107 of 126

4.4.4.4.2. Overviews

The overview is the main control panel to monitor and analyse the port activities. The overview will show all

the enabled views in a table of two columns. In the Figure 108: Custom Visualizations you can see the layout

of the visualizations showed in the overview.

Figure 109: Overview Layout

Next figure shows an example of the overviews with 3 visualizations.

Figure 110: Example of overview with 3 visualizations

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 108 of 126

4.4.4.5. Dashboard – Reporting

This functionality allows the users to create flexible dashboards and reports thanks to a mechanism that lets

the user insert different types of information in any place/size of the report. During the creation of the

dashboard the user can drag and drop and resize any visual component to make the most adequate report for

each case.

Figure 111: Dashboard Management

Dashboard creation/edition

If a user wants to create a new dashboard (click Add button) or edit an existing one (click Edit button).

Figure 112: Dashboard Creation

Dashboard visualization and Print

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 109 of 126

Figure 113: Dashboard Visualization

4.4.4.6. PAS Information

The PAS Information allows defining the information needed to use the Port Activity Scenario model (PAS

Model).

The information has been divided in 3 sections:

- Rules: Cargo Categories, Shift works and priorities information.

- Resources: Machines and Areas information.

- Supplier Chain: Supplier chain information.

Figure 114: PAS inputs and outputs

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 110 of 126

4.4.4.6.1. Rules

The rules functionality allows creating the information related with cargo types, shift works and priorities. It is

possible to create several rules. After finalising the definition of the rules, it is possible to publish the

information (export to Information Hub) to be used by the PAS Model.

After creating a new rule (Add Rule button), the user can complete the content of the rule through the Edit

button that opens a new page. From this page, it is possible to define cargo categories, shift works and

priorities.

Figure 115: Rules List

Cargoes Category

The form for the creation of charge categories is divided into 3 steps:

 In the Step 1 general property information is filled in.

 In the step 2 preference properties are filled in.

 In the step 3 range property information is filled in.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 111 of 126

Figure 116: Create Cargoes Category

Shift work

The form for the creation of Shift works allows you to create different work schedules for a port that will later

be assigned to different activities.

Figure 117: Create Shift Work

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 112 of 126

Priorities

The priorities form allows you to define the priorities for attending to the different cargo categories.

Figure 118: Add Priority

4.4.4.6.2. Resources

The resources functionality allows creating the information related with areas and machines. It is possible to

create several resources. After finalising the definition of the resources, it is possible to publish the

information (export to Information Hub) to be used by the PAS Model.

After creating a new resource (Add Resource button), the user can complete the content of the resource

through the Edit button that opens a new page. From this page, it is possible to define areas and machines.

Figure 119: Resources List

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 113 of 126

Area

The area form allows you to define a new port Area where a where port activities take place.

Figure 120: Create Area

Machine

The Add Machine form allows you to create a new machine and it is divided into 3 steps. In the Step 1 general

property information is filled in. In the step 2 throughput properties are filled in. In the step 3 range

consumption information is filled in.

Figure 121: Create Machine

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 114 of 126

4.4.4.6.3. Supplier Chain

The supplier chain functionality allows creating the information related with a supply chain and its steps. It is

possible to create several supply chains. After finalising the definition of the supply chains, it is possible to

publish the information (export to Information Hub) to be used by the PAS Model.

After creating a new supply chain (Add Supplier Chain), the user can complete the content of the supply chain

through the Edit button that opens a new page. From this page, it is possible to define the details, steps, and

compatibilities of a supply chain.

Figure 122: Supplier Chain List

Detail

The detail form allows you to define the detail properties of the supply chain.

Figure 123: Create Supply Chain Details

Steps

The Add Steps form allows you to create the different steps of the supply chain and it is divided into 3 steps:

 In the Step 1 general property information is filled in.

 In the step 2 scheduling properties are filled in.

 In the step 3 work information is filled in.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 115 of 126

Figure 124: Create Supply Chain Steps

Compatibility

The compatibility form allows you to define the elements (cargo categories, direction, areas and shift works)

compatible with the supply chain.

Figure 125: Create Supply Chain Compatibility

4.4.4.6.4. Publish – Export to Information Hub

After defining rules, resources, and supply chains, you should publish this information to be available for the

PAS Model. To publish the information created you only need to press the “Export to IH” button available in

list of rules, resources, and supply chains. After executing the action, you will see the execution result with

the name of the index created. You will need to specify the name of the index when you run a new instance of

the model.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 116 of 126

Figure 126: Index created

Every time that a user updates any information related with the Port Activity scenario it is needed to use

export the information (Export to IH) to have the new data available for the PAS model.

4.4.4.7. Map

The maps functionality allows the user to see the location of several devices or sensors. It is possible to filter

by a specific type of device. In the figure, you can see the location in the map of the tide sensors that measure

the tide level. If you select (click on the icon) a sensor, a new panel appears showing details of the sensor and

the captured values.

Figure 127: Map view with tide sensors

4.4.4.8. Operational Tools

PIXEL is a flexible analytical platform; through the operational tools (OP Tools) you can install new

analytical functionalities and perform as many analyses as you need.

In PIXEL the analytical functions have been grouped in 2 types. The functionalities based on models (1) and

the functionalities based on predictive algorithms (2). Both can be executed on demand (3) or can be

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 117 of 126

programmed to be executed periodically (4). After the executions (5), graphs (6) or KPIs (7) can be created to

show the results of the model/algorithm executions.

Figure 128: Models /algorithms execution and visualization

4.4.4.8.1. Models

The models functionality is part of the OP Tools and allows you to manage the models added/installed in the

platform. The Add model button allow us to create/ add a new model into the PIXEL platform, the

information needed is the label or name of the model and the Docker name. All the models are encapsulated

into Docker components.

Figure 129: Models Management

Schedule

The schedule functionality allows you to manage the scheduled executions of a model. To Add a new

schedule (1) you have to provide the name of the schedule, the parameters of the model and the schedule

information. Each model has different Parameters (2), in the example we have chosen the “vessels-SEI”

property.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 118 of 126

Figure 130: Model Execution Schedule

After the model is executed, it is possible to verify the execution results from the view button (1). At any

moment, the user can pause / run (play) (2) the scheduled executions of a model.

Figure 131: Model Execution Result

Run Model

The Run functionality allows you to manage the on demand executions of a model. To Add a new Run (1) you

have to provide the name of the run and the parameters of the model. Each model has different Parameters. As

soon as you confirm the run, the model is executed. The status property of the table will show the “Finished”

value when the execution ends. From the view (2) button, it is possible to view the result of the execution.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 119 of 126

Figure 132: Model runs

4.4.4.8.2. Predictive Algorithms

The Predictive Algorithms functionality is part of the OP Tools and allows you to manage the algorithms

added/installed in the platform. The functionality is equivalent to the model functionality, but in this case

instead of running Artificial Intelligent Models, it runs predictive algorithms.

Figure 133: Predictive Algorithm management

4.4.4.8.3. KPIs

The KPI functionality allows you to create different KPI related with model execution. There are two types of

KPIs, environmental KPIs and Operational KPI. You can define as many KPIs (1) as you need and show the

trends of them (2).

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 120 of 126

Figure 134: KPI Management

4.4.5. PIXEL Security

We use standard FIWARE Security Components and architecture to implement the Security Layer, so you can

refer to the FIWARE official documentation to how to use those components:

 KeyRock,

 Wilma

 AuthZForce

KeyRock offer an API to manage it: http://<keyrock>:<port>/v1

Keyrock also offer a WEB UI to manage it more friendlily: http://<keyrock>:<port>

FIWARE also propose full tutorials to manage KeyRock and Wilma.

For the security we use 2 main features of FIWARE Security solutions:

 OAuth2: to authenticate users, agents and API Consumers.

 Authorizations control based on roles and permissions of Keyrock.

4.4.5.1. OAuth2 mechanism

The full documentation on OAuth2 features implemented with FIWARE is available on the official

documentation.

On PIXEL to authenticate Data Source that will push data to a Daemon NGSI Agent, we use the

grant=password mechanism:

Table 25: OAuth2 mechanism

Authorization Basic

We authenticate against an application, we need 2 information for that application

 Client id

 Client secret

https://fiware-idm.readthedocs.io/en/latest/oauth/oauth_documentation/index.html
https://fiware-pep-proxy.readthedocs.io/en/latest/
https://authzforce-ce-fiware.readthedocs.io/en/latest/
https://keyrock.docs.apiary.io/
https://github.com/FIWARE/tutorials.Roles-Permissions
https://fiware-idm.readthedocs.io/en/latest/oauth/introduction/index.html
https://fiware-idm.readthedocs.io/en/latest/oauth/introduction/index.html

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 121 of 126

Then we can combine them to create the Authorization Basic token:

 base64(client_id:client_secret)

Access Token Request

POST /oauth2/token HTTP/1.1

Host: id.<pilot>.port-pixel.eu

Authorization: Basic <authorization basic token>

Content-Type: application/x-www-form-urlencoded

grant_type=password&username=<user email>&password=<user password>

user email and password have to be URL Encoded, the token is valid 1 hour. To refresh it you can

authenticate again, or use the refresh token.

Permanent Access Token Request

For some client who can’t implement the OAuth2 mechanism, we can provide them a permanent

token (it is still possible to revoke it)
POST /oauth2/token HTTP/1.1

Host: id.<pilot>.port-pixel.eu

Authorization: Basic <authorization basic token>

Content-Type: application/x-www-form-urlencoded

grant_type=password&username=<user email>&password=<user password>
&scope=permanent

user email and password have to be URL Encoded

Access Token Response

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"bearer",

 "expires_in":3600,

 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

}

Refresh Token

POST /oauth2/token HTTP/1.1

Host: id.<pilot>.port-pixel.eu

Authorization: Basic <authorization basic token>

Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&refresh_token=<refersh_token>

Token Verification

curl https://id.<pilot>.port-pixel.eu/user?access_token=<access_token>
 {

 "organizations": [

 {

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 122 of 126

 "id": "13e88767-7473-472d-9c33-110c5bed2a57",

 "name": "test_org",

 "description": "my org",

 "website": null,

 "roles": [

 {

 "id": "9c4e8db4-a56b-4731-bfc6-7dd8fb2fbea3",

 "name": "test"

 }

]

 }

],

 "displayName": "My User",

 "roles": [

 {

 "id": "9c4e8db4-a56b-4731-bfc6-7dd8fb2fbea3",

 "name": "test"

 }

],

 "app_id": "ff03921a-a772-4220-9854-e2d499ae474a",

 "isGravatarEnabled": false,

 "email": "myuser@test.com",

 "id": "myuser",

 "authorization_decision": "",

 "app_azf_domain": "",

 "username": "myuser"

 }

4.4.5.2. Authorizations

The second FIWARE security mechanism we use is the Authorizations solution. It relies on role/permission

architecture.

The main object is the Application that regroups the authorization information. Then we can define

permissions and roles. Roles are a set of permissions.

And finally we can trust user and organization (group of user) on the Application with assigned roles.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 123 of 126

Figure 135: Diagram of Authorization mechanism

We use two kind of permission:

 Basic permission: they rely on the HTTP verbs and the resource path (could be a regex).

 XACML rules using AuthZForce.

On PIXEL we didn’t interact directly with AuthzForce or KeyRock as PDP (Policy Decission Point). We use

KeyRock as a PAP (Policy Administration Point) and we use Wilma as PEP (Policy Execution Point).

https://fiware-tutorials.readthedocs.io/en/latest/administrating-xacml/index.html

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 124 of 126

Figure 136: Interactions among different components of Pixel Security Layer

In order to manage the permissions on KeyRock, you have two solutions:

 KeyRock API : That offer all features to manage each objects

 KeyRock UI : That offer a friendly way to do the job

Figure 137: Managing permissions on KeyRock

4.4.5.3. Data Tracking and Security

In order to track where the data come from and to implement security control for sensible data, all the

information that enters through the DAL is tagged with two special attributes:

 Source

 DataProvider

The Source field is an URN created and managed by PIXEL to be a unique identifier of the DataSource that

provide the data, for example: urn:pixel:DataSource:dummies.

https://keyrock.docs.apiary.io/
https://fiware-idm.readthedocs.io/en/latest/user_and_programmers_guide/introduction/index.html

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 125 of 126

The catalogue of DataSource is managed in the ORION Database. All the DataSource known in PIXEL

platform or stored in object of type DataSource. We also stored the schema of each Data Model and

SourceModelRelation that provide the information on which DataSource provide which DataModel.

 DataSource format is

{

 "id": "urn of the data source",

 "type": "DataSource",

 "name": {

 "type": "Text",

 "value": "the source name if it is not an urn"

 }

}

 DataModel format is

{

 "id": "type name as declared in the orion entity",

 "type": "DataModel",

 "schema": {

 "type": "StructuredValue",

 "value": an object containing the json schema

 },

 "schemaUrl": {

 "type": "string",

 "value": "an url to the schema"

 },

 "schemaEncoded": {

 "type": "STRING_URL_ENCODED",

 "value": "a text version URL encoded of the schema if it contains forbidden

characters"

 }

}

schemaUrl is mandatory, schema should be provide for compatibility with previous version,

schemaEncoded has to be present only if schema contains forbidden chars.

 SourceModelRelation format is:

{

 "id": "urn of the relation datasource/dataModel",

 "type": "SourceModelRelation",

 "source": {

 "type": "Text",

 "value": "urn/id of the DataSource"

 },

 "model": {

 "type": "Text",

 "value": "Data Model provide by the DataSource"

 }

}

That information is mainly used by information Hub to decide the data to import from Orion.

 D 6.4 – PIXEL data acquisition, information hub and data representation v2

 Version 1.0 – 29-June-2020 - PIXEL
©

- Page 126 of 126

5. Conclusions and Future work

5.1. Conclusion
This document represents the second version of the “PIXEL data acquisition, information hub and data

representation report”. It contains the final version of the PIXEL platform including technical documentation

and software components. A lot of effort has been done during these months to adapt the preliminary version

of the platform presented in the D6.3 to its architectural design.

This deliverable will be used by pilots to install the PIXEL platform and learn how to use it.

5.2. Future work
This document has been written based on 22 months of work (4 – 26). Although the current version of the

platform is the final version, is almost sure that during the development of the different pilots some problems

will arise, and it will be needed to proceed with some minor changes to this version of the platform. These

changes and adjustments will be developed within the task T7.1 with the support of the partners involved in

WP6.

