

PIXEL Information System architecture

and design - Version 2

Deliverable No. D.6.2 Due Date 31/10/2019

Type Report Dissemination Level Public

Version 1.0 Status Release 2

Description This document is the second version of the final architecture. It reports about the

PIXEL Reference Architecture (analysis and design of the different modules).

Work Package WP6

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 2 of 65

Authors
Name Partner e-mail

Carlos E. Palau P01 UPV cpalau@dcom.upv.es

Benjamin Molina P01 UPV benmomo@upvnet.upv.es

Ignacio Lacalle P01 UPV igluab@upv.es

Miguel A. Llorente P02 PRO mllorente@prodevelop.es

José A. Clemente P02 PRO jclemente@prodevelop.es

Flavio Fuart P03 XLAB flavio.fuart@xlab.si

Gašper Vrhovšek P03 XLAB gasper.vrhovsek@xlab.si

Dejan Štepec P03 XLAB dejan.stepec@xlab.si

Vito Čuček P03 XLAB vito.cucek@xlab.si

Marko Kuder P03 XLAB marko.kuder@xlab.si

Marjan Šterk P03 XLAB marjan.sterk@xlab.si

Marc Despland P06 ORANGE marc.despland@orange.com

Charles Garnier P05 CATIE c.garnier@catie.fr

Erwan Simon P05 CATIE e.simon@catie.fr

Eirini Tserga P10 ThPA SA etserga@thpa.gr

Gilda De Marco P04 INSIEL gilda.demarco@insiel.it

Thanassis Chaldeakis P11 PPA SA ahaldek@gmail.com

History
Date Version Change

10-June-2019 0.1 ToC and task assignments

22-October-2019 0.2 First draft of the document

20-Nov-2019 0.3 Internal Review

Key Data
Keywords Reference Architecture, IoT, Data Acquisition Layer, Information Hub,

Operational Tools, Dashboard, Notifications, Security, Deployment, Agile

Development.

Lead Editor Jose A. Clemente P02, PRO

Internal Reviewer(s) GPMB, CREOCEAN

mailto:cpalau@dcom.upv.es
mailto:igluab@upv.es
mailto:mllorente@prodevelop.es
mailto:jclemente@prodevelop.es
mailto:dejan.stepec@xlab.si
mailto:vito.cucek@xlab.si
mailto:marko.kuder@xlab.si
mailto:c.garnier@catie.fr
mailto:gilda.demarco@insiel.it
mailto:ahaldek@gmail.com

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 3 of 65

Abstract
This deliverable contains the second version of the PIXEL architecture for the information systems and its

initial design. It reports all the analysis and design activities performed throughout the project until month 18

(M18).

The document describes the process of defining an IoT platform to perform the ICT-supported activities of

PIXEL: gathering IoT and structured data from ports to improve efficiency of processes and operations, by

means of the application of simulations and prediction based on models and algorithms, finally leading to a

better environmental performance of the port.

The document firstly describes the concept of reference architecture focusing on those that serve as a basis for

PIXEL. These are RAMI and IIRA for their European and global relevance and IoT-A for its orientation

towards interoperability, a main requirement of PIXEL.

After this, a chapter is presented about the relation between Agile Development and the chosen Architecture

or how the features of Agile Development (Containers, APIs) will intervene in the development of PIXEL.

The next section (section 4) presents the global architecture of the solution and the functional blocks with their

components. In first instance the global architecture is described to give the full picture of the software

solution proposed. After this, the different functional blocks are presented.

The Data Acquisition Layer (DAL) has the mission of gathering data from heterogeneous data sources and

persist them in a single storing point. The solution proposed for this is the creation of IoT Agents adapted to

the different data sources generic formats (some examples are provided in section 5.3 Data Examples), giving

balance between flexibility and standardization. Other additional components of this block are the data hub,

the short term historic or the proxies for agents. The central broker receives and pushes the data to the next

instance layer.

The Information Hub (IH) is a functional block in charge of centralising all the data retrieved from DAL,

homogenising and storing in a database capable to support big queries and scale horizontally. Unlike the

DAL, the Information Hub is designed to be high performant and scalable, and the data is stored to support

long-term queries. This is considered the central storage point of the IoT solution in PIXEL and is the block

that replies the queries from other functional blocks (such as the Operational Tools or Dashboards). The IH’s

main components are a high-performance data broker and a NoSQL database, although it contains accessory

components that support its correct functioning.

The Operational Tools (OT) are devoted to enable the analysis and reasoning over the data gathered by the

platform both in real time and in batch processes. These tools are built to support models and algorithms

developed in the activities of WP4. OT includes a publication interface, model engine, a predictive algorithms

engine, an event processor and an internal database.

The Dashboard and Notifications (DN) module has the capability of representing the data registered in the

IH in meaningful combined visualizations in real time. Also it provides the capability to send notifications

based on the status of the data of the IH. Finally, this module provides (aggregates and homogenises) all the

user interfaces for the different functional blocks. This block is composed by the notifications engine, chart

and dashboards agent and the different UI agents for the modules.

Finally, the Security block is a cross-layer module that will perform the security of the other blocks, including

authentication and authorization control. This architecture is based in standard architectural approaches,

following best practices in the field of internet security.

In section 5 the Information model is described. This chapter will also contain examples of already defined

models such as the data that are received and what are the transformations that take place in the DAL to

normalize the data.

The document also describes how PIXEL will lead with deployment and scalability (multi-instance, multi-

tenant). Environment and testing strategies are also discussed in these sections, detailing the principles of

multi-environment deployment and testing activities. A section has been included to detail how the

deployment will take place in the different ports, building a link with WP7.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 4 of 65

The final chapter summarises the conclusions of the document and establishes the links to depending activities

in related packages (WP4, WP6 and WP7).

Statement of originality
This document contains material, which is the copyright of certain PIXEL consortium parties, and may not be

reproduced or copied without permission. This deliverable contains original unpublished work except where

clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has

been made through appropriate citation, quotation or both.

The information contained in this document is the proprietary confidential information of the PIXEL

consortium (including the Commission Services) and may not be disclosed except in accordance with the

consortium agreement.

The commercial use of any information contained in this document may require a license from the proprietor

of that information.

Neither the project consortium as a whole nor a certain party of the consortium warrant that the information

contained in this document is capable of use, nor that use of the information is free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

The content of this report reflects only the authors’ view. The Innovation and Networks Executive Agency

(INEA) is not responsible for any use that may be made of the information it contains.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 5 of 65

Table of contents

Table of contents ... 5

List of tables .. 7

List of figures .. 8

List of acronyms .. 9

1. About this document .. 11

1.1. Deliverable context .. 11

1.2. The rationale behind the structure .. 13

1.3. Version-specific notes .. 13

2. Reference Architecture (RA) ... 14

2.1. PIXEL RA .. 16

2.1.1. RAMI 4.0 ... 18

2.1.2. IIRA ... 18

2.1.3. IoT-A ... 19

2.1.4. Conclusion ... 20

3. Applied Agile concepts ... 21

4. Functional architecture .. 22

4.1. Global architecture ... 22

4.2. Components diagrams .. 23

4.2.1. PIXEL Data acquisition ... 23

4.2.2. PIXEL Information Hub .. 25

4.2.3. PIXEL Operational Tools .. 28

4.2.4. PIXEL Integrated Dashboard and Notifications .. 30

4.2.5. PIXEL Security .. 32

4.3. Selected technological options ... 33

4.4. Integration aspects .. 34

4.4.1. Linking Data Acquisition Layer with the Information Hub .. 34

4.4.2. Linking Information Hub and Operational Tools .. 36

On-demand and on-timer execution ... 36

Integration in the data flow .. 36

4.4.3. Models integration through Operational Tools .. 37

4.4.4. Dashboard and Notifications ... 39

4.4.4.1. Integration of UI with Alerts ... 39

4.4.4.2. Integration of the notifications in the dashboard ... 40

4.4.5. Privacy and Security .. 41

5. Information Model ... 41

5.1. Review of existing Data Models .. 42

5.1.1. FIWARE Data Models ... 43

5.1.1.1. Data Model .. 43

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 6 of 65

5.2. PIXEL Initial Data Model .. 44

5.3. Data examples .. 47

5.3.1. Integrated Surface Data ... 47

5.3.1.1. Raw Data ... 48

5.3.1.2. Transformations ... 48

5.3.1.3. Final Data .. 49

5.3.2. Vessel Call ... 49

5.3.2.1. Raw Data ... 49

5.3.2.2. Transformation .. 50

The fields of Table 5 are generic and not necessary fully applicable for all ports. 51

5.3.2.3. Final Data .. 51

6. Deployment and scalability ... 52

6.1. Containers .. 52

6.1.1. Docker .. 53

6.2. Distributed integration ... 53

6.3. APIs .. 54

6.3.1. PIXEL APIs ... 54

6.3.1.1. Data Acquisition .. 54

6.3.1.2. Information Hub .. 55

6.3.1.3. Operational Tools .. 55

6.3.1.4. Dashboard .. 56

6.3.1.5. Security .. 56

6.4. Environments and testing ... 56

6.5. Scalability. Multi-Instance vs Multi-Tenant .. 58

6.5.1. Deployment of PIXEL platform .. 60

6.6. Deployment architecture. Cloud vs On-premises vs Hybrid .. 61

6.6.1. Ports deployments .. 62

6.6.1.1. Server requirements ... 62

7. Conclusion and future work .. 64

7.1. Conclusion ... 64

7.2. Future work .. 64

References ... 65

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 7 of 65

List of tables

Table 1: Deliverable context ... 11
Table 2: Generic field for Data Model .. 43
Table 3: PIXEL Data format for this example .. 48
Table 4: Header fields ... 50
Table 5: Specifics Data fields .. 50
Table 6: Recommended and minimum set of resource for port deployments ... 62

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 8 of 65

List of figures

Figure 1: IoT Design Choices. The full spectrum of various levels of IoT architecture from the sensor to cloud

and back ... 15
Figure 2: Conceptual Reference Architecture ... 16
Figure 3: PIXEL Reference Architecture .. 17
Figure 4: Reference Architectural Model Industry 4.0 (RAMI 4.0) .. 18
Figure 5: IIRA Architecture Viewpoints ... 19
Figure 6: IoT-A's Views and perspectives ... 19
Figure 7: IoT-A's functional model ... 20
Figure 8: Mapping process among RAMI, IIRA and IoT-A ... 21
Figure 9: PDCA cycle ... 22
Figure 10: Global architecture ... 23
Figure 11: Component architecture of the system ... 24
Figure 12: shows the component architecture of the system ... 26
Figure 13: Functional overview of the Operational Tools aligned with other PIXEL modules 29
Figure 14: Real time invocation of models through OT API .. 30
Figure 15: Shows the component architecture of the system .. 31
Figure 16: PIXEL Security mechanism ... 32
Figure 17: XACML Reference Architecture. Source: Axiomatics.com .. 33
Figure 18: PIXEL's architecture with technology by module ... 34
Figure 19: Integration between DAL and IH ... 35
Figure 20: Synchronization of data sources between DAL and IH ... 35
Figure 21: Integration models and OT .. 38
Figure 22: Engine subcomponent .. 39
Figure 23: PRAECO's UI .. 40
Figure 24: Check the newly created rule ... 40
Figure 25: Workflow related the reception of notifications .. 40
Figure 26: Example of IoT cross domain applications .. 42
Figure 27: PIXEL Initial Data Model .. 46
Figure 28: Multiple records in ISH format .. 48
Figure 29: Docker for PIXEL Dashboard and Notifications ... 53
Figure 30: Cycle of Continuous Integration .. 53
Figure 31: PIXEL APIs ... 54
Figure 32: Multi-tenancy ... 58
Figure 33: Characteristics of multi-Tenant and multi-Instance ... 59
Figure 34 Differences between Multi-Tenant and Multi-Instance architecture .. 60
Figure 35: Elements in the Docker of Dashboard and Notifications ... 60
Figure 36: Different Docker-compose per environment ... 61

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 9 of 65

List of acronyms

Acronym Explanation

ACID Atomicity, Consistency, Isolation, Durability

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

BI Business Intelligence

CD Continuous Delivery

CEP Complex Event Processing

CI Continuous Integration

CLI Command Line Interface

CN Core Network

CoAP Constrained Application Protocol

CPU Central Processing Unit

CQL Cassandra Query Language

CCSA China Communications Standards Association

CSV Comma Separated Values

DB Database

ESB Enterprise Service Bus

ETSI European Telecommunications Standards Institute

FP7 Seventh Framework Programme

GIS Geographical Information System

GPMB Grand Port Maritime de Bordeaux - Port of Bordeaux

HA Highly-available

HTTP HyperText Transfer Protocol

IDM Identity Manager

IIOT Industrial IoT

IMO International Maritime Organization

IoT Internet of Things

IoT-A Internet of Things Architecture

IP Internet Protocol

IIRA Industrial Internet Reference Architecture

ITU International Telecommunication Union

JSON JavaScript Object Notation

KMZ Keyhole Markup Language

LDAP Lightweight Directory Access Protocol

LAN Local Area Network

LTS Long-Term Storage

LXC Linux Containers

MQTT Message Queuing Telemetry Transport

M2M machine-to-machine

NGSI Next Generation Service Interfaces

OT Operational Tools

PAN Personal Area Network

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 10 of 65

PAP Policy Administration Point

PDCA Plan – Do – Check – Act

PDP Policy Decision Point

PEI Port Environmental Index

PEP Policy Enforcement Point

PIP Policy Information Point

PIXEL Port IoT for Environmental Leverage

PM10 Particulate Matter 10µm

PM2.5 Particulate Matter 2.5µm

PPA Piraeus Port Authority

PRP Policy Retrieval Point

KPI Key Performance Indicators

RA Reference Architecture

RAMI Reference Architectural Model Industry

RDBMS Relational Database Management System

REST Representational State Transfer

RFID Radio Frequency Identification

SMS Short Message Service

SNS Simple Notification Service

SOA Service-oriented architecture

SQL Structured Query Language

SSL Secure Sockets Layer

STOMP Simple Text Oriented Messaging Protocol

STS Short-Term Storage

TLS Transport Layer Security

THPA Thessaloniki Port Authority

UI User Interface

VMPS VLAN Membership Policy Server

WP Work Package

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

XMPP eXtensible Messaging and Presence Protocol

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 11 of 65

1. About this document

The aim of the deliverable is to present the definitive architecture that will be used in PIXEL (after the first

version in D6.1), as well as to identify and analyse the different modules at a high level view.

For the technological choices work of previous deliverables (D3.2 and D3.4, Definition of Requirements and

Use Cases) has been considered.

This document complements the information reported in D6.1 and explains decisions of the software release

of D6.3. The following sections have been newly included:

 Applied Agile concepts

 Integration aspects

While the following ones have been complemented or fixed:

 Reference Architecture

 Functional Architecture

 Information Model

 Deployment and Scalability

This document is intended to be used as a reference for software developers to have a general vision of the

technical aspects of the different functional modules including the interaction between components, data

flows, interfaces and design decisions. Although it is primarily intended for technical readers, its general

perspective might be mostly understandable by non-technical readers.

1.1. Deliverable context
Table 1: Deliverable context

Keywords Lead Editor

Objectives Objective 1: Enable the IoT-based connection of port resources, transport

agents and city sensor networks,

This document represents the second and final part of the specification of

the information system that will support PIXEL activities, including

deployment in pilot sites.

Objective 2: Achieve an automatic aggregation, homogenization and

semantic annotation of multi-source heterogeneous data from different

internal and external actors.

The document describes the information system that enables the features

of this objective. In particular, the data acquisition layer and the

information hub have the responsibility of achieving this.

Objective 3: Develop an operational management dashboard to enable a

quicker, more accurate and in-depth knowledge of port operations.

This document describes the architectural and design lines that fulfil

this objective. The functional block in charge of it is the dashboard

and notifications module.

Objective 4: Model and simulate port operations processes for automated

optimisation.

This objective is technologically supported by the operational tools

building block. Therefore, although this deliverable does not address

directly the modelling and simulation, it sets the underpinning software

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 12 of 65

elements that make possible the use of modelling and simulations in port

sector.

Objective 5: Develop predictive algorithms.

Similar as for the models, the operational tools will support the predictive

algorithms developed in WP4, so that port staff is able to configure and

execute them.

Work plan This deliverable reports about the work performed in task 6.1. The

contents are a fundamental input for tasks T6.2, T6.3, T6.4 T6.5 and T6.6.

The results reported in this document are also important for the work done

in WP4, to develop the models and predictive algorithms to be integrated

in the operational tools module.

Milestones Direct contribution to MS7 (ICT solution developed, M26).

Indirect contribution to MS5 (Predictive models/algorithms, M24.

Deliverables Detected inputs:

 D6.1: D6.2 is the second iteration of this document with the aim

to describe the final architecture.

 All the inputs of D6.1 are valid for document D6.2. These are:

o D3.2: D6.1 considers all requirements listed in order to

provide an initial supporting architecture.

o D3.4: Use cases and scenarios manual v2: D6.1 considers

the different defined use cases of scenarios to identify

main building blocks and interactions.

o D4.2 PIXEL Models v2: D6.1 includes the Operational

Tools module responsible to import, configure and run

models described in D4.1; D4.2 is the updated version of

D4.1 releases in M18.

Detected outputs:

 D6.4 PIXEL Data Acquisition, Information Hub and Data

Representation v2: Some functional blocks will be described in

detail in separate documents and D6.1/D6.2 sets the base layer for

this.

 D6.5 APIs and documentation for software extension: D6.2 allows

identifying the interactions among the functional blocks and

therefore defining the APIs.

Risks This deliverable helps mitigating the risks 6, 8, 14, 16, 17 and 18.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 13 of 65

1.2. The rationale behind the structure
This document introduces the need of reference architecture (RA) and what are the characteristics that

reference architecture should have?

The document also describes the architecture adopted and the different modules of PIXEL’s RA:

 PIXEL Data Acquisition (see PIXEL Data acquisition).

 PIXEL Information Hub (see PIXEL Information Hub).

 PIXEL Operational Tools (see PIXEL Operational Tools).

 PIXEL Integrated Dashboard and Notifications (see PIXEL Integrated Dashboard and

Notifications).

 PIXEL Security and Privacy (see PIXEL Security).

1.3. Version-specific notes
This document is the second version of the deliverable "PIXEL Information System architecture and

design" (D6.2). This document aims to clarify the doubts that may remain outstanding in D6.1 and fix the

architecture on which the development of PIXEL is based.

This document provides a final version of the architecture according to the works done until month 18. It will

also contain some interfaces about the PIXEL design and will deepen the deployment in the different ports.

This document is the closing result of task 6.1, which is enhancing D6.1. Therefore, the results of D6.1 are

essentially gathered in these two documents, which are complementary and, in case of update of any

information, this is conveniently declared in D6.2.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 14 of 65

2. Reference Architecture (RA)

The concept of reference architecture refers to the component and services layout and best practises of an IT

system that is likely to be implemented recurrently with similar objectives but different contexts, constraints

or business variations. It is not the scope of this document to explore comprehensively the concept of RA and

its usefulness in IoT scenarios, to know more about this, there is extensive literature available
1
 (Perry, 2018)(

Fremantle, 2015).

PIXEL challenges such as the establishment of an IoT Platform valid for very heterogeneous conditions

(different port sizes, different port operations, different areas and KPIs monitored…), makes very appropriate

for the project the definition of reference architecture to keep a common technological and functional

blueprint event when the deployments vary and the requirements are in some cases disparate.

Thus, establishing a RA and architectural patterns is a good practise in the scenarios faced in PIXEL. A RA

for IoT in ports will lay the foundation for a common framework for the development of future systems and

communications between market players. In addition, a RA is an important component of standardisation,

contributing in the medium term to reducing costs for ports compared to each of the individual solutions

currently available. Some other reasons for defining a RA before specifying the architecture are the

following
2
:

 IoT devices are inherently connected. We need a way to uniformly interact with them.

 There are billions of devices in the market and the number is growing quickly. So, it becomes

necessary to have a scalable architecture. Requirements vary among deployments even of the same

technology and they also change throughout time. The need for adaptation is continuous.

 Management of devices (automatic updates, remote management) is needed, and these devices can

change, evolve, be deprecated, substituted, etc.

 Security. These devices collect sensitive data thus it is necessary to establish a security layer that

controls the communication between devices or with the platform that receives the data. Security

protocols, patterns and technologies changes across devices and time.

 Provides a starting point for architects looking to create IoT solutions as well as a strong basis for

further development (PIXEL).

According to these conditions, the use of a RA provides stability and reliability of the designed solution across

multiple scenarios (as is the case in PIXEL) and throughout the time.

It is important to distinguish that a RA is more abstract than a system architecture that has been developed for

a specific set of applications (PIXEL) with particular constraints and scenarios
3
.

Due to the heterogeneity of concepts and technologies a RA for IoT is more complex than a traditional

architecture due to relationships between the different technologies used.

It is important to understand the impact on scalability and other parts of the system when choosing a certain

design aspect.

According to the book: "Internet of Things for Architects" (Perry, 2018), currently there are over 1.5

million different combinations of architectures to choose from.

1
 http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf

2
 Paul Fremantle. A Reference Architecture for the Internet of Things:

https://www.researchgate.net/publication/308647314_A_Reference_Architecture_for_the_Internet_of_Things
3 https://iotforum.org/wp-content/uploads/2014/09/120613-IoT-A-ARM-Book-Introduction-v7.pdf

https://www.researchgate.net/publication/308647314_A_Reference_Architecture_for_the_Internet_of_Things
https://iotforum.org/wp-content/uploads/2014/09/120613-IoT-A-ARM-Book-Introduction-v7.pdf

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 15 of 65

Figure 1: IoT Design Choices. The full spectrum of various levels of IoT architecture from the sensor to cloud and

back

Architectures, in general, cover different perspectives to describe the whole system and the internal

interactions:

 Functional elements.

 Interaction between elements.

 Information management.

 Operational features.

 Deployment of the system.

These architectural viewpoints are described in the following sections, adapted for the PIXEL project and its

main objectives.

With this brief introduction, the RA is defined as the tool expected by the systems architect to create the

foundations of a reliable, secure, future-proof and resilient IoT platform. This is, in a modular way through

blocks and flexible design options, able to cover and describe specific systems encompassing functional

requirements, performance, and deployment, standardization of interfaces, security and connectivity with its

environment
4
.

4
 http://www.academia.edu/7197061/Estado_del_Arte_de_las_Arquitecturas_de_Internet_de_las_Cosas_IoT

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 16 of 65

Figure 2: Conceptual Reference Architecture

2.1. PIXEL RA
The aim of the PIXEL’s RA is to modularly establish a series of components that meet the main

needs/requirements of the PIXEL project.

Each of these components is intended to provide part or a complete solution to the different functional

requirements of PIXEL. In addition, there is a transversal layer (as in Conceptual Reference Architecture) that

manages security and access. In the following list the requirements needed to stablish a PIXEL’s RA are

described:

 Connectivity and communications. These features are related with the capacity to connect the different

modules to each other and their interrelations. It spans all the components.

 Device management. It’s important to have a centralized administration point to register devices

(sensors, external platforms) that can interact with the platform and their special features (precision,

range). This is located in the PIXEL Information Hub.

 Data collection, analysis and actuation. The data collection will take place in PIXEL Data

Acquisition modules whereas the analysis and actuation will take place through the PIXEL

Operation Tools.

 Scalability. This factor is critical in IoT platforms. Our RA needs to be scalable due to the great

quantity of devices that exists now and will exist in the future, especially in the port sector.

 Interoperability. The PIXEL platform is defined as a central data processing, warehouse and

visualization point for data from diverse sources in ports. This data can be generated by isolated

devices, other IoT platforms, other IT systems or services or even document-based systems. This wide

range of sources put the focus on the interoperability capabilities that the resulting architecture will

support.

 Security. This aspect is one of the most important aspects of any IoT project. That is why our

architecture will have a module for security (PIXEL Security and Privacy).

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 17 of 65

 Predictive analysis. This is one of the functionalities / tools that will be framed in the module PIXEL

Operational Tools.

 Integration. According to the Perficient guide, The Why, What and How of IoT: 50+ examples across

11 industries
5
, “Integration helps capture data from smart devices and move it into business

applications to automate processes, support real-time monitoring and apply analytics for insights”.

 Visualization of the information. It is important to have a good dashboard that allows understand

correctly the data and the different simulations. For that we identify a module with a complete

dashboard referenced as the PIXEL Integrated Dashboard and Notifications.

At the time to speak about RA it is possible to differentiate two types of IoT architectures: generic ones and

industrial ones (IIOT).

In order to create a RA for PIXEL, an attempt has been made to reach a consensus on architecture with the

best characteristics of both fields. For this reason, the chosen architecture presents characteristics of:

 RAMI

 IIRA

 IoT-A

RAMI and IIRA (both IIOT architectures) are complementary. IIRA analyses IIOT in all industries, with an

emphasis on homogeneity and interoperability between industries, while RAMI 4.0 focuses on

manufacturing and related value chain life cycles.

The great added value of both architectures consists in allowing interoperability between those IIOT systems

that are built on the basis of these reference architectures.

IoT-A provides the understanding of an open architecture for the IoT and fully covers security and privacy

issues as well as scalability and interoperability among other aspects.

Due to these features and aspects the following picture depicts modularly the RA of PIXEL:

Figure 3: PIXEL Reference Architecture

The next section will comment briefly the differences among RAMI, IIRA and IoT-A.

5
 https:// www.perficient.com/-/media/files/guide-pdf-links/the-why-what-and-how-of-iot.pdf

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 18 of 65

2.1.1. RAMI 4.0

RAMI define a service-oriented architecture, in which each of the components/modules provides services to

the other components via a communication protocol across a network.

The principles of SOA architecture are independent of suppliers, products and technologies. The goal is to

divide complex processes into packages that are easy to understand (as in PIXEL). This also includes data

privacy and security (PIXEL Security).

RAMI promotes the principal aspects of the industry 4.0:

 Interoperability. Devices, machines and even people need to communicate between them.

 Real-time data. A Smart factory must be able to store data in real-time.

 Service oriented. Production is oriented to the client. The products are created following the

specification of the clients.

 Modularity. The factories act as a module adapting it to the trends market, seasonality.

A major goal of RAMI 4.0 is to make sure that all participants involved in Industry 4.0 discussions and

activities have a common framework to understand each other (as occurs in PIXEL).

The following figure illustrates the RAMI 4.0 architecture:

Figure 4: Reference Architectural Model Industry 4.0 (RAMI 4.0)

2.1.2. IIRA

IIRA is an architecture based on standards designed for IIOT system. The value of this architecture is its fast

applicability (the life cycle of the product is taken into account).

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 19 of 65

The IIC
6
 Architecture Task Group under the Technology Working Group is responsible for the IIRA.

It has been built and designed with a high level of abstraction with the idea to support the requisite broad

industry applicability.

This architecture can be divided in four viewpoints:

 Business. Concerns to the identification of stakeholders and their business vision, values and

objectives.

 Usage. Addresses the concerns of expected system usage.

 Functional. Focuses on the functional components, their interrelation and structure, the interfaces and

interactions between them.

 Implementation. Deals with the technologies needed to implement functional components, their

communication schemes and their lifecycle procedures. These components are coordinated by

activities (Usage viewpoint) and supportive of the system capabilities (Business viewpoint).

Figure 5: IIRA Architecture Viewpoints

2.1.3. IoT-A

IoT-A is an Architectural Reference Model proposed by European Commission (FP7
7
). The proposed RA

introduces the concepts of views and perspectives. Its design is as follows:

Figure 6: IoT-A's Views and perspectives

o Views. “Different angles for viewing an architecture that can be used when designing and

implementing it”
8
. The views include: Functional view, Information view, Deployment and

operation view as seen in the image above.

6
 www.iiconsortium.org

7
 https://ec.europa.eu/research/fp7/index_en.cfm

8
 http://www.iot-a.eu/

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 20 of 65

o Perspectives. “Set of tasks, tactics, directives, and architectural decisions for ensuring that a

given concrete system accomplishes one or more quality attributes”
9
.

The image above illustrates the architecture from a functional point of view. The next figure shows the

functional IoT-A model.

Figure 7: IoT-A's functional model

2.1.4. Conclusion

The reasons for the election of these three architectures as basis for PIXEL RA are:

 Industrial focus (RAMI and IIRA). The applications based on PIXEL will be developed in industrial

environments, such as ports, and thus the specific requirements for industry will match better than

generic architectures.

 Focus on interoperability (IoT-A), a challenge which is described as a major objective of the project.

 Follows a European initiative (IoT-A) that has been implemented in other projects from other

domains. This way, the RA will accomplish one of their missions, to make the results more

standardized and be less technology dependent.

 Previous experience of the project partners with the methodologies and views used.

The following figure depicts a mapping process among RAMI, IIRA and IoT-A architecture:

9
 http://www.iot-a.eu/

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 21 of 65

Figure 8: Mapping process among RAMI, IIRA and IoT-A

3. Applied Agile concepts

In the development of end-to-end IoT solutions, one of the biggest challenges is how to integrate IoT data

with data streams from enterprise systems and external sources.

Currently, when connecting different systems and applications traditionally it is traditionally highlighted the

use of a Service-Oriented-Architecture (SOA) and an Enterprise Service Bus (ESB). But these two

possibilities have as main drawback their complexity and time consuming implementation cycle. For IoT it’s

extremely important the adaptability to digital business imperative (adaptability to changes) and

interoperability. Due to this, an agile approximation / integration is considered in the project.

The term agile integration refers to a continuous integration / continuous delivery (CI / CD) process used for

software releases. For this, it’s very important to make use of the modern development technologies like

containers and microservices which facilitates approximations as CI / CD.

The use of agile techniques facilitates the rapid creation of prototypes and iterations. Therefore, their adoption

is very suitable for IoT projects (as in PIXEL).

There are three features that will be needed for a correct agile integration:

1. Containers.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 22 of 65

2. Distributed integration.

3. APIs.

These three aspects will be commented in detail in section 6, ¡Error! No se encuentra el origen de la

referencia..

The idea with these aspects is to obtain a constant interaction cycle of progress that will deliver the results

incrementally as services. With this the development of the different use cases will follow the Deming Plan –

Do – Check –Act cycles (PDCA cycle, see figure below). There will be a constant interplay between the use

cases progress and the technology developments in PIXEL.

Next figure depicts the PDCA cycle commented below.

Figure 9: PDCA cycle

4. Functional architecture

4.1. Global architecture
In this section the architecture of PIXEL will be described from a functional point of view. For that, it’s

important to have a global vision of the architecture.

Following figure, ¡Error! No se encuentra el origen de la referencia., shows the global architecture

including the interaction with the different data sources and the output to the devices that will work with

PIXEL.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 23 of 65

Figure 10: Global architecture

In the following subsections the different modules and their components will be further described.

4.2. Components diagrams

4.2.1. PIXEL Data acquisition

The PIXEL Data Acquisition Layer consists of several components designed to push data from the several

data sources available and the PIXEL Information Hub. The solution provides a standard way to acquire data

from different data sources that implements different kind of protocols and different data types.

The idea is to provide a standard way to import data into PIXEL Information Hub in order to allow an easy

use of any kind of data sources available on each port.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 24 of 65

Figure 11: Component architecture of the system

Components involved for the Data Acquisition are:

 Context Broker. The context broker is responsible for the implementation of the standard data model

used to import data on the PIXEL Information Hub. It collects the data from the data sources through

specifics agents and pushes the new data to the Information Hub through the Persistent Data Hub

component. It stores the last version of each entity (context data) in its own database (Context DB).

 Persistent Data Hub. The Persistent Data Hub is a connector used for persisting context data

(managed by the Context Broker) into another third-party database and the PIXEL Information Hub.

It could send data simultaneously to several storage systems so it will be able to send new data to the

Data Broker of the Information Hub and also to the Short-Term History component.

 Short Term History. The Short-Term History component is used to keep track of the last imported

data from the data sources but also to trace the activity of each Agent. The imported data should be

pruned often, the main purpose here it just to be able to check that the data was well imported in the

Information Hub.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 25 of 65

 Agent. Agents are specific components developed to import data from a data source on the Context

Broker. The Agent is in charge of reading the data source format and converting it to the shared data

model used on PIXEL. There are two main kinds of Agents:

o Agent pulling data from the data source. If the data source provides an API to retrieve the

data, the Agent for this data source implements a client and connects periodically to the

source to acquire new data.

o Agent listening to data pushed by the data source. For some data source, it is easier to push

the data rather implementing an API. For those cases, the Agent will implement an API to

allow the data source to push its data whenever it wants. The security of the access will be

performed by the OAuth2 Security Proxy.

 OAuth2 Security Proxy. The OAuth2 Proxy is a part of the security component

The Agents are in charge of protocol adaptation, so several standard agents will be provided to address each

kind of data source that could be used in PIXEL:

- HTTP REST agent: Expose a REST API (JSON or XML) to allow data sources to push data to the

Context Broker.

- HTTP POST File (CSV, JSON or XML) to allow data sources to send data file using an HTTP Post

feature.

- MQTT Agent: This agent will allow connecting to MQTT channels in order to retrieve data.

4.2.2. PIXEL Information Hub

The main architectural approach for the PIXEL Information Hub is based on robust experience gained by

XLAB during the design of a similar technical solution for the FAIR (Facility for Antiproton and Ion

Research)
10

 particle accelerator based in Darmstadt, Germany. FAIR is an international accelerator facility for

the research with antiprotons and ions, which is being developed and built in cooperation with international

partners.

PIXEL Information Hub consists of several parts conceptually divided into components that push data toward

the database (downstream); components involved in stored data retrieval and further processing (upstream)

and components responsible for data persistence and storage. In addition, the system provides supporting

services for configuring, managing and monitoring the PIXEL Information Hub.

Refinements since D6.1: We have identified the requirement for near real-time integration of some models

and predictive algorithms in the overall PIXEL data flow. For this reason, an interface has been defined to

“plug-in” PIXEL operational tolls to the PIXEL Information Hub core data flow process. With this approach,

we achieve scalability and performance for on-the-fly processing of incoming data streams. Furthermore, API

access will be the managed centrally through PIXEL security components, so the diagram and description

reflects this adaptation.

10

 https://fair-center.eu/

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 26 of 65

Figure 12: shows the component architecture of the system

Components involved in the downstream flow are:

● Data Collector. The Data Collector component is responsible for obtaining data records from various

devices and data sources through the PIXEL Data Acquisition layer, analysing and filtering their

fields and pushing them downstream to the Data Broker for further processing.

● Data Writer. The Data Writer component acts as a bridge between the Data Broker, Short-Term

Storage and Long-Term Storage components. It is responsible for pulling the records from the Data

Broker, parsing their meta-info headers, initializing long or short term storage for the data source (if

needed), and finally archiving them.

● Data Reductor. The Data Reductor collects and reduces data accumulated in the Short-Term Storage

by applying different reduction algorithms, and permanently stores the reduced device data in the

Long-Term Storage. Reduction operations are distributed between Data Reductor instances on a per

Source basis, according to rules provided in the Configuration component. Reduction algorithms can

be implemented and integrated into the Data Reductor service at build time or loaded at runtime. The

status of the Data Reductor node is communicated to the rest of the system through the Data Broker.

Components involved in the upstream flow:

● Data Extractor. The Data Extractor component is responsible for seamlessly querying the data

archived in both the Short-Term Storage and Long-Term Storage components. A dedicated Data

Extractor Client provides a simple interface for accessing Data Extractor capabilities and facilitates

client application development.

● Client application(s). Client applications use the provided REST API to obtain data maintained by

the PIXEL Information Hub through the API Gateway. In the PIXEL context, client applications are

primarily managed as part of the PIXEL Operational Tools and the PIXEL Dashboard. Nevertheless,

a well-documented and efficient REST API allows development of additional, stand-alone, clients.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 27 of 65

Storage and buffering components:

● Short-Term Storage (STS). Incoming data from devices and other sources is temporarily stored in

the Short-Term Storage component in order to make it accessible from the Data Extractor. This

provides the ability of browsing, exporting and correlating the data in full granularity and serves as a

temporal persistent buffer and search engine for the Data Reductor component. On the other hand, the

metadata are always stored directly in the Long-Term Storage.

● Long-Term Storage (LTS). The Long-Term Storage component is used to store reduced or raw data,

provided by the Data Reductor and Data Writer components. The reduction enables the system to

decrease storage requirements, thus lowering cost by avoiding storage of historically non-relevant

data.

● Configuration Service. Configuration Service is the central configuration repository of the PIXEL

Information Hub. Zookeeper is used in order to assure optimal availability, performance and

configuration management. It is essentially a distributed hierarchical key-value store, which is used to

provide a distributed configuration service, synchronization service, and naming registry for large

distributed systems.

● Data Broker. The Data Broker component aggregates all data received from the Data Collector

component, originating from the Data Acquisition platform. It provides a common interface for other

components to retrieve and filter live data based on device/source name and property. In addition, it

acts as an optimal consumer for the collector component underneath, reducing data flow congestion

by buffering, effectively easing out any potential load peaks.

Supporting components:

● Context Service. The Context Service is the main back-end component responsible for providing

information about the current context, managing global settings and Sources as well as applying

complex settings that involve other components.

● Instance Monitor. Is a service which, using a shared library, collects metrics from all service

instances. It enables clients to track metrics such as CPU and RAM consumption, data throughput and

more. It is also responsible for triggering notifications in case of failures.

● Data Collector Controller. Main purpose of Data Collector Controller is to maintain the

configuration of devices and deployed Data Collector nodes. It is connected to Data Collector

instances by watching and updating common nodes of the Configuration Service.

● Data Writer Controller. Similar to Data Collector Controller, the purpose of Data Writer Controller

is to maintain configuration of deployed Data Writer nodes. It is connected to Data Writer instances

by watching and updating common nodes of the Configuration Service.

● Data Reductor Controller. The Data Reductor Controller is responsible for providing and

configuring Data Reductor instances. It also provides monitoring for processing units; it allows

configuration of load distribution and manages user provided or integrated reduction algorithms.

● Data Extractor Controller. The Data Extractor Controller is responsible for providing and

configuring Data Extractor instances. It is connected to Data Extractor instances by watching and

updating common nodes of the Configuration Service.

● Administration GUI. The Administration GUI is a web-based application exposing a user interface

enabling admins to configure, monitor and control the PIXEL Information Hub. Admins can add or

remove data sources, change instance node configurations and be notified about errors in the systems

triggered by the Instance Monitor. They can also track load on different instance nodes, turn services

on or off and manage reduction algorithms.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 28 of 65

Components involved in the downstream flow together with the Data Extractor also belong to the Data

Worker Group and their controllers to the Data Worker Controller Group. This notion is particularly useful

when arranging and scaling components. In addition, Data Worker Group components together with storage

are heavily involved in data processing and provide functionality of data acquisition, processing and retrieval.

4.2.3. PIXEL Operational Tools

The Operational Tools (OT) are mainly in charge of bringing closer to the user both the models and predictive

algorithms developed in WP4. By user here we mean administrators and managers analysing port operations

by means of simulation models and predictive algorithms. In order to reach that goal, a set of high-level

operational tools are defined, these are:

 Publish models and/or predictive algorithms.

 Edit and configure the models and/or predictive algorithms

 Execute models and/or predictive algorithms.

 Schedule models and/or predictive algorithms to be executed at a specific time once or periodically.

 Define different operational (e.g. bottleneck detection) and environmental (e.g. PEI) KPIs, based on

the data available in the information hub (from data sources, executions of models, etc.) for tracking

and monitoring purposes.

 Establish some pattern detection mechanism. The most basic one is the use of triggers for a model

and/or predictive algorithm. For example, when some event happens (e.g. some input changes), it may

cause the relaunch of a scheduled model.

 Get the trends of a model and/or predictive algorithm. This implies:

o Visualization of the latest historical values.

o Possibility of making some basic regression process to get near future data, supposing the

model can be characterized according to a certain distribution (e.g. linear, exponential, etc.).

 Detect anomalies and raise alarms. Specific rules can be established in order to trigger alarms and

actions whenever some threshold is reached or some condition is reached.

Note that the PEI is a particularisation of a model as well as a KPI; in fact the PEI is also composed of

several KPIs (eKPIs and indexes, see deliverable D5.2).

The functional overview of the Operational Tools is depicted in Figure 13. Several internal components can be

identified:

 OT UI: this is the graphical interface to access (most of) the underlying functionalities. This

component provides independence and autonomy, but it can be later integrated as part of the PIXEL

dashboard to provide a single-entry point for administrators.

 OT API: backend API implementing the functionalities needed. This component is aligned with

PIXEL security framework in order to fulfil all required security policies (e.g. authentication,

authorization, etc.).

 Publication component: it allows publishing both models and predictive algorithms. By publishing it

may be necessary to deploy the models as services. Besides, the models ‘and predictive algorithms’

configurations can also be edited.

 Engine: this component is responsible for executing the different models and predictive algorithms.

The execution can be invoked in real time or scheduled.

 Data processing: it is responsible for managing trends from models and/or predictive algorithms and

also for some internal data adaptations required.

 Event processing: this component is responsible for real-time monitoring of indicators and conditions

and trigger specific actions depending on previously configured rules. It includes a bridge to integrate

with an external notification system.

Database: the database includes description of the models and predictive algorithms that can be used, KPI

description, rules as well as other configuration and output related parameters necessary for the correct

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 29 of 65

behaviour of the internal building blocks. Some execution results might be stored internally besides being

provided to the information hub.

Figure 13: Functional overview of the Operational Tools aligned with other PIXEL modules

The engine can execute models and predictive algorithms according to configuration parameters, which are

provided directly at runtime through the model/algorithm’s API, or obtained from the database for periodic

executions.

The flow is depicted in Figure 14. An external component can invoke a model in three different ways:

 In real time (now), passing the necessary input parameters. This could be the case of what-if scenario.

 Scheduled for a certain point in the future (once). In this case, the input parameters should be stored in

a database to a later feed the models. They can be static.

 Scheduled in a periodical way (periodic). Here the inputs might be stored as well in the database, but

they can change (e.g. weather information changes every day for a daily schedule).

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 30 of 65

Figure 14: Real time invocation of models through OT API

From the point of view of the external invocation an asynchronous interface is provided, handled mainly by

the Engine internal component. The interface with the specific model and/or predictive algorithm can be either

synchronous or asynchronous; it depends on the final implementation of it and this approach covers both

possibilities.

The database stores all necessary data that allows the configuration and execution of the different internal

components building the OT module. Therefore, it will be necessary to create a data model aligned with the

PIXEL data model. The OT API allows access to the database from external components, whereas internal

components may directly invoke the database.

Some entities are identified for the data model:

1. Model descriptions. This mainly refers to a proper meta-data for the models that allows not only being

described (name, description, data sources, etc.), but also being executed (service, endpoint, input

parameters, output data format).

2. Predictive algorithms description. Similar as for models.

3. KPIs description. It allows categorization (operational, environmental) of KPIs, modes of getting this

value from available data (typically IH), and establishing thresholds in order to later being able to

monitor if they are exceeded.

4. Rules. Set of conditions to be monitored. This can be linked with the thresholds of the KPIs, or any

other threshold established by the port operator. This is a logical repository, which might be shifted to

an external notification system.

5. Execution instances with related parameters (configuration, status, result).

6. Event history. A table of historic events in order to keep track of them throughout time.

4.2.4. PIXEL Integrated Dashboard and Notifications

The PIXEL Integrated Dashboard and Notifications is designed to show the data available from the PIXEL

Operational Tools and also from the IH. These data are the result of:

 Retrieving data from IoT and other information sensors

 Apply predictive algorithms and models.

 Calculate the PEI.

 Notifications from Event Processing. Whenever a rule is met, a notification will be received from

the Operational Tools module.

These data are represented to the platform user via three main channels:

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 31 of 65

 Charts & Dashboard. Visualization of the data received from the different data sources (devices,

sensors), results of simulations, predictions, etc.

 GIS. Geolocated data (sensors, devices, services, data result) is represented in a map view, which

offers the geospatial interpretation of the data and allows interpolation of information, detecting

potential sources of anomalies, etc.

 Notifications: Coming from executions of predefined rules/conditions, this channel allows the

transmission of high-importance or actionable information to the appropriate addressee(s), doing it in

the specific moment when the information is useful for informed decision-making, establishing

prevention mechanisms or doing meaningful reports.

Figure 15: Shows the component architecture of the system

There are two kinds of elements involved in the PIXEL Integrated Dashboard and Notifications:

1. Inputs. Data entries that will be shown on dashboards and other types of visualizations.

a. PIXEL Information Hub. The data comes from PIXEL Information Hub thanks to its API. These

data come from the following inputs.

i) Database. The database stores all that comes from PIXEL Data Acquisition.

b. Notifications engine. It is the engine where will be created the rules that in case of being fulfilled

will end up triggering the alerts / notifications that will be seen in the dashboard. In the cases of

PIXEL, alerts are typically generated by the analysis of data inside the information hub.

2. Outputs. Visualization of data offered to the end user.

a. Charts & Dashboards. Component responsible for the visualization of data in real-time via

graph/chart representation a cluster of several charts that show information of a specific problem

or an aspect of the port (for instance vehicle activity, lighting status) in a single screen, as long all

that charts are related and show a specific view of the general problem.

b. Notifications. Will be the result of a met rule (for instance, a value is over a threshold, a sequence

is met, the average of a value is below a threshold, the number of values over a threshold in a

certain period, etc.). The result of a notification can be an email, a ticket in JIRA or a conversation

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 32 of 65

in Slack for example (Command (custom), Email, JIRA
11

, SNS
12

, HipChat
13

, Slack
14

,

Telegram, Google Chat and STOMP
15

).

c. GIS. Dashboard will include a map section where visualize the port area where the data comes

from and the information of the different devices / sensors that are in the area.

d. PIXEL Operational Tools UI. UI for planning, configuring, managing and visualize the results of

executing the PIXEL Operational Tools (PEI, predictive algorithms).

e. PIXEL Information Hub UI. UI for see the data stored in the PIXEL Information Hub.

4.2.5. PIXEL Security

The PIXEL Security solution is in charge of providing a solution to identify and authenticate users that could

be connected to existing identity management solutions already deployed in ports, and also of providing a

solution to control the access of the data managed by the PIXEL Solution.

The solution provides an API Gateway based on OAuth2 mechanism in order to protect the access of the

different API exposed by PIXEL. The Gateway also implements XACML rules in order to define access rules

based on API URL and VERBS and the user roles.

The security solution provides also an Identity Management solution that can be used by other PIXEL

components to share the same user identity across the all platform.

Figure 16: PIXEL Security mechanism

11

 https://es.atlassian.com/software/jira
12

 https://aws.amazon.com/sns
13

 https://www.atlassian.com/software/hipchat/downloads
14

 https://slack.com
15

 https://stomp.github.io

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 33 of 65

The security will rely on 3 mains components:

 Identity management: This component manages the user database and connects to existing Identity

Management solutions. It also implements the OAuth2 standard protocol (signing, signup,

authenticate…).

 API Rules Control Management: This server is in charge of managing API Control access rules

based on XACML in order to control if a user is allowed to access specifics part of the API exposed.

 Security Proxy: This proxy check that the user is allowed to make the API call he/she requested. It

checks the OAuth2 token with the Identity Management Server and the API rules against the XACML

server.

The security in PIXEL is based on the XACML reference architecture. This architecture allows setting fine-

grained authorization rules at API level, so that all resources in the platform are secured and their access is

restricted to users in a per-resource basis.

Figure 17: XACML Reference Architecture. Source: Axiomatics.com

As mentioned, the use of XACML-based architecture (FIWARE security stack is based on it) allows filtering

all resources and features requests on the platform (in the PEP) and set up intelligent rules (via PDP and

PAP/PIP/PRP) that can discriminate users, context data, time frames, etc. XACML enables, therefore, a

flexible and complete control over the access to the platform data and, at the same time, stablish a well-

defined manageable permission hierarchy. In PIXEL, the permission on resources and data affects not only to

what a user can see on the platform view (menus, resources, actions) but also to the API action that can

perform. Consequently, when authorization rules are defined, these protect the management and the

programming side of the platform, being consistent and robust again attacks such as reverse engineering.

4.3. Selected technological options
The aim of this point is to have located in a section the technological option chosen for each module.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 34 of 65

 Data Acquisition Layer will use the FIWARE stack.

 IH will use a stack based on the open source projects Elastic, Kafka and Zookeeper.

 For OT the development will be ad hoc. As the Event Processing Engine ElastAlert will be

used; for the execution and scheduling of models and predictive algorithms, supporting

asynchronous mode and adapted version of the Agenda project will be used

(https://github.com/agenda/agenda).

 Dashboard and Notifications will use Elasticsearch for the storage. Kibana will be the

Dashboard tool and ElastAlert the notifications tool. The UI will be built with vue.js/vuetify

and leaflet.js (GIS)

 For Security layer the option chosen is based on XACML and FIWARE.

Next picture depicts the architecture indicating the technologies used in each layer.

Figure 18: PIXEL's architecture with technology by module

4.4. Integration aspects

4.4.1. Linking Data Acquisition Layer with the Information Hub

The core component of DAL is the Orion Context Broker which is responsible for the implementation of the

standard data model used to collect data and store it into the PIXEL Information Hub. This Generic enabler is

not only a way to store the data provided by the Data Source with a generic API to query them (NGSI API).

Through the Orion Context Broker context elements representing entities from the PIXEL Information Model

(see PIXEL Initial Data Model) are created and managed. In addition, DAL provides a functionality to

retrieve the list of all entity types and entities. Furthermore, an external module (PIXEL IH in this case) can

subscribe to context information, so when some condition occurs (e.g. the context elements have changed) a

notification is received through HTTP call-back.

https://github.com/agenda/agenda

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 35 of 65

Figure 19: Integration between DAL and IH

These usage scenarios allow the implementation of a discovery service that provides all data sources and

exposes them to the PIXEL IH administrator through the management UI. Those sources can then be switched

on, which means the subscription gets activated and all data changes are gathered by the IH and stored to a

new Elasticsearch index as timeseries representing changes of all entities from that source, where each PIXEL

IH source represents an Orion entity type.

Next flow diagram depicts the synchronization of data sources between DAL and Information Hub as well as

flow of data from external data sources to the data storage within Information Hub.

Figure 20: Synchronization of data sources between DAL and IH

1. After connecting new data source to the Orion Context Provider, the system administrator opens the

Information Hub dashboard and preforms the 'Sync sources' action to synchronise the list of sources

registered within Information Hub with sources provided by DAL. The Information Hub dashboard

sends 'Sync sources' request to the Data Collector Controller REST API.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 36 of 65

2. Data Collector Controller retrieves a list of all entity types that exist in the DAL by sending 'GET

/types' request to Orion REST API. Each entity type corresponds to one data source within Information

Hub.

3. Data Collector Controller registers new data source in the Information Hub Config Storage

(ZooKeeper). Data source identifier equals to the entity type.

4. Data Collector receives a notification from the Config Storage that new data source has been added.

5. Data collector subscribes to the given Orion entity type by sending a subscribe request to the Orion

Context Broker.

6. When the given entity type is updated at the Orion Context Broker by an external data source, Orion

sends a notification message to the Data Collector. The notification message contains all attributes of

one or more updated entities. For each updated entity the Data Collector generates a corresponding

Archive Record object.

7. Data collector sends Archive Record objects through the Data Broker (Kafka) to the Data Writer

component.

8. Data Writer component stores records to the short-term (STS) or long-term (LTS) storage.

4.4.2. Linking Information Hub and Operational Tools

The Operational Tools have several execution modes, which affect the way of interfacing with the PIXEL IH.

OTs may execute on demand, at specified time intervals or in a near-real time mode, when the execution is

triggered on predefined changes of data source attributes. In addition to execution modes, OTs need access

information (metadata) about data available in the PIXEL IH.

On-demand and on-timer execution

The main integration component for on demand/on timer execution of OT models and predictive algorithms is

through the PIXEL IH Data Extractor component and the native Elasticsearch interface.

The Data Extractor supports REST API calls for querying meta-data and querying actual measurements stored

in the PIXEL IH. There is no need for the client to know whether data comes from a meta-repository, STS or

LTS, as the Data Extractor engine is responsible for distributing calls to relevant subsystems and merging the

results. In addition to a registry (discovery) functionality that provides a list of available data sources, clients

can request a list of time periods for which data is available for a given query. In this case a list of time

periods (time-stamp from/to) is returned with the meta-data attached to each measurement. Based on available

time periods OTs can then request data for a specific time series.

In addition to the functionality provided by the Data Extractor, OTs can use the Elasticsearch interface to

execute queries using the native Elasticsearch interface.

There are two ways how OTs can write modelling or Predictive Algorithms results back to the PIXEL

Information Hub. Either a custom-developed PIXEL IH Data Collector can be developed, or the standard

Elasticsearch REST API can be used. Based on performance and functional requirements of OTs models and

PAs to be integrated, the most suitable approach will be used, as the open architecture defined in this

document supports both.

Integration in the data flow

A more advanced integration approach is needed when a model or PA has been invoked (through scheduling)

and there is a specific change in a data source. For example, a predictive algorithm to estimate the time of

departure of a vessel may be executed each time there is a new ship entering the port. For this reason, an

interface has been defined to integrate models/PAs directly into the PIXEL IH flow by exposing system setup

and message broker interfaces through a special “OT connector” library that will be integrated with those

models that need this functionality. This library will be used during the integration of models as described in

the following chapter (Integration models in the Operational Tools).

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 37 of 65

4.4.3. Models integration through Operational Tools

The Operational Tools have as mission the adaptation, execution and orchestration of the models developed in

WP4 to let the rest of platform components and PIXEL users to manage, control and obtain results out of the

models. The same applies for the predictive algorithms and also for the PEI that is conceived also as a model.

This implies the exposition of two interfaces: one interface to wrap the heterogeneous models into a common

format (standardization) and a second to expose the module features for the rest of components and users.

However, the whole process requires to be decomposed into several steps to guarantee modularity and

flexibility and this chapter is devoted to describe it from an architecture perspective.

The process is depicted in figure Integration models and OT. It has been already introduced in a previous

deliverable (D6.3) but here more details will be provided to better understand the interaction with the

architecture.

At a WP4 level, the initial phase of the model is provided as a typical executable file. This initial model

(model X in figure below) can be developed in different programming languages (Java, JavaScript). Each

model is supposed to interpret one JSON file as input and provide one JSON file as output, with a specific

data format. Working with JSON formats is widely accepted good practise to work with open interfaces due to

its conciseness and readability. However, some proprietary models may require a special treatment where the

conversion from formats may be inefficient; therefore, it is possible to support other formats and encapsulate

the proprietary format (part or all the input) also into a JSON format as raw data. Therefore, the system is

provided with flexibility to manage different input formats.

At a WP6 level, the initial model is first converted into a service (see service X in figure below) that

encapsulates the functionality and allows to be invoked with a REST API. For maximum flexibility, the

service is further encapsulated into a Docker instance, able to be deployed anywhere (not only in the PIXEL

platform). A common API has been specified for such service to support a wide range of functionalities:

versioning, monitoring, execution, training (mainly for predictive algorithms) and user interface. A detailed

specification is outside the scope of this deliverable and will be described in deliverable D6.5. The use of

Docker for containerisation also allows including certain libraries at OS level that can facilitate extended

functionalities to the service. As example, the CURL library is able to provide HTTP access to external

services (therefore, the service could potentially query any external service to get some intermediate

processing).

The containerised version of the service enters then in the PIXEL platform through the OT, at publication

phase. A new entry in the PIXEL data model is added, representing the model (as a service). The entity

includes different attributes (name, inputs, outputs, endpoints, etc.) that can be later queried. The publication

API in the Operational Tools allows publishing the service as a Docker image (still to be deployed within

PIXEL) or as an external service (the Docker instance is already deployed). The latter case will not be the case

for the PIXEL deployed models, but allows that third party services (models) could in the future be published

in the PIXEL platform.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 38 of 65

Figure 21: Integration models and OT

The publication API in the Operational Tools allows publishing the service as a Docker image (to be later

deployed within PIXEL) or as an external service (the Docker instance is already deployed). The latter case

will not be the case for the PIXEL deployed models, but allows that third party services (models) could in the

future be published in the PIXEL platform. The process is depicted in the Figure below. The first model

(model 1) is converted into a service and deployed into an external service repository; through the Model-as-

a-Service publication (MaaS). In this case, the Operational Tools do not need to deploy the service internally

in the PIXEL platform, but just to store the details in the PIXEL data model. The second model (model 2) is

also converted into a service and dockerized, placed into a public Docker repository; through the Model-as-a-

Docker publication (MaaD), the Operational Tools deploys the service within the PIXEL platform, and inserts

the service endpoint as part of the details in the PIXEL data model.

Invocation to the deployed services will not be performed directly from end users, but through the Operational

Tools, that act as proxy and provide an additional management layer able to run and schedule these services,

even providing asynchrony. This functionality is mainly performed by the Engine subcomponent of the

Operational Tools.

Model X

(java,js)

input.json [dataformat]

other

output.json [dataformat]

other

Service X

(tomcat,node)

API

OT PIXEL publication

Conversion

to service

Docker

Curl – http client

/version/

/status

/getDescription

/execute

/train

/ui

WP4 (executable app) WP6 (service app)

Common

API

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 39 of 65

Figure 22: Engine subcomponent

4.4.4. Dashboard and Notifications

4.4.4.1. Integration of UI with Alerts

ElastAlert is the component responsible for the creation of alerts in the module of Dashboard and Notification.

It is a framework to alert about anomalies, spikes or other patterns of interest in Elasticsearch data. It is a tool

that complements Kibana to alert about data inconsistencies.

It works by combining Elasticsearch with two types of components: rule types and alerts.

Elasticsearch is consulted periodically and the data is passed to the rule type, which determines when a match

is found. When one occurs, one or more alerts are given, which take action based on the match.

It is configured through a set of rules, each of which defines a query, a type of rule and a set of alerts.

Several types of rules are included with common monitoring paradigms with ElastAlert:

 Match where there are X events in time Y (frequency type).

 Match when the rate of events increases or decreases (spike type).

 Match when there are less than X events in time Y (flat line type)

 Match when a given field matches a blacklist and whitelist type.

 Match any event that matches a given filter (any type).

 Match when a field has two different values within some time (change type).

ElastAlert is a plugin installed over Kibana. The creation of alerts with ElastAlert forced the user to know its

syntax when he wanted to create alerts / rules. With the aim to avoid this Praeco will be used as UI.

Praeco is an alerting tool for Elasticsearch. It is a UI for ElastAlert. Praeco uses the API of ElastAlert.

Among the features of Praeco are:

 Supports notifications to Slack, Email of HTTP POST.

 Use templates to pre-fill commonly used rule options.

 Supports Any, Blacklist, Whitelist, Change, Frequency and Spike ElastAlert rule types.

 Interactively build alert rules using a query builder.

Model1 (java,js)

input.json

output.json

Service1
(tomcat,node)

API

PIXEL
datamodel (OT)

publication API

MaaS

publication

Conversion

to service

Model2 (java,js)

input.json

output.json

Service2
(Docker image)

API

PIXEL
datamodel (OT)

publication API

MaaD

publication

Conversion

to service

service
deployment
required

No service
deployment
required

Docker repository

External service repository

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 40 of 65

 Test your alerts against historical data.

Next picture depicts the aspect of PRAECO’s UI.

Figure 23: PRAECO's UI

This component has a region in order to test / check the newly created rule.

Figure 24: Check the newly created rule

4.4.4.2. Integration of the notifications in the dashboard

Among the functions involved in the Dashboard is the management of notifications. These notifications can

come from executions of predefined rules / conditions.

Next picture illustrates the process since a rule is met until it arrives to the UI:

Figure 25: Workflow related the reception of notifications

1- ElastAlert is the engine responsible to create and validate if a rule is met.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 41 of 65

2- Once a rule is met ElastAlert will interact with the Notifications API. This API has been built with

Node. This API will be securitized with the IDM of FIWARE.

3- After validated the access to the API throughout IDM of FIWARE, the API will insert the notification

in the DB (MongoDB).

4- The API will check if exists any Notification pending to send to the UI.

5- UI will receive the notifications.

4.4.5. Privacy and Security

FIWARE modules KeyRock with Wilma and AuthzForce are the chosen option to implement the main

security access mechanism on PIXEL.

KeyRock offers a unique endpoint to manage users, roles and organizations. All those information are

available through the Identity Manager KeyRock API and the other PIXEL modules could rely on this API to

manage user, roles and organization. Modules could share the authentication using a common PIXEL cookie

(on / *.pixel-ports.eu for example) containing the access token provided by the API.

But for a better user experience, modules could also rely on the OAuth2 mechanism supported by KeyRock

and Wilma. That way whatever URL was used to exposed the different portals of PIXEL, the user will

authenticate only once on the identity endpoint. As OAuth2 is a common standard on the Internet it will be

also quite easy to extend the PIXEL functional perimeter and to add new component on PIXEL.

The most standard way to manage identity and SSO on PIXEL is to use the OAuth2 mechanism. Later if

PIXEL wants to integrate with the identity management system available on the port, it will only be necessary

to build an OUAth2 interface on top of it.

5. Information Model

An Information model
16

, in software engineering, is a representation of concepts, relationships, restrictions,

business rules with the intention of specifying the data semantics of a domain (business area) in question. The

model labels information according to the ways it will be accessed.

The model provides a framework where the information is accessible to experienced and inexperienced

seekers alike.

Due to the large and wide variety of device types (different vendors, languages and techniques used) the

device are not interoperable. In our context (IoT domain), the heterogeneity can be explained by the following

reasons:

 The languages/techniques/protocols used for M2M processes and communication are often

proprietary.

 Vertical fragmentation of IoT to cover all the needs of the different fields/applications/use cases

(smart home, smart building, smart city, smart industry, smart health, etc.).

 Devices are not interoperable as they do not use common vocabularies to describe interoperable IoT

data (Gyrard 2015). The languages used do not have common terms to describe the same things.

Several types of heterogeneity are encountered in the IoT field as for example:

1. Temporal heterogeneity. Due to the use of different sources of information from different machines

and devices (different time zones and unsynchronized clocks).

2. The autonomy of data sources is another type of heterogeneity.

3. Data heterogeneity. When similar data are represented in a different form in information sources.

This type of heterogeneity includes several issues:

16

 https://en.wikipedia.org/wiki/Information_model

https://keyrock.docs.apiary.io/#reference/keyrock-api/user-organization-relationship
https://en.wikipedia.org/wiki/Information_model

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 42 of 65

a. Naming. Data sources can use different naming conventions for the values they store (case

sensitivity, acronyms, misspellings, etc.).

b. ID mismatch or missing ID. The ID used in two different databases can differ. This is

particularly true when the data source used URIs for identification. In this case, the

namespaces or the use of prefixes may introduce differences between the data sources.

c. Element ordering. If set of data are used, the order can differ between two data sources.

4. Language heterogeneity. Includes all the differences due to the languages used in the sources and

variations introduced by the latter (grammar, ambiguity, etc.):

a. Encoding. This type of heterogeneity is introduced when different encoding mechanisms are

used (ANSI, UTF-8, etc.).

b. Language. This encompasses script mismatch (variations during the process of stemming for

example), parsing errors (Arabic language vs romance language), ambiguous sentences,

semantic errors, etc.

Due to this reasons is for what it’s so important the definition of the Information model.

A good information model must ensure interoperability among IoT cross domain applications. Next figure,

Example of IoT cross domain applications, will illustrate better the relevance of this concept.

Figure 26: Example of IoT cross domain applications

5.1. Review of existing Data Models
A recommended way for using ontologies is trying to reuse existing ones rather that creating an own one, and

extend or adapt it. So, the idea in this section is to explain one of the most known ontologies (FIWARE) and

explain why (or why not) use the models offered.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 43 of 65

5.1.1. FIWARE Data Models
17

FIWARE
18

 provides several data models easy to reuse and to contribute. They cover several domains and are

built together with the FIWARE community. These data models
19

 have been harmonized to enable data

portability for different applications including, but not limited, to Smart Cities. They are intended to be used

together with FIWARE NGSI version 2
20

.

They define several domains that cover PIXEL partially needs:

 ENVIRONMENT
21

: Enable to monitor air quality and other environmental conditions for a healthier

living.

 TRANSPORTATION
22

: Transportation data models for smart mobility and efficient management of

municipal services.

 DEVICE
23

: IoT devices (sensors, actuators, wearables, etc.) with their characteristics and dynamic

status.

 PARKING
24

: Real time and static parking data (on street and off street) interoperable with the EU

standard DATEX II.

FIWARE Data models have been identified in PIXEL as the starting point to build data formats regarding IoT

sensors to be integrated in the PIXEL Data Acquisition Layer (DAL). Considering that the employed software

DAL technology is also composed by FIWARE enablers, it seems a suitable approach and potentially

identifies specific contribution from PIXEL towards the FIWARE community by potentially extending

models, or adding new ones.

5.1.1.1. Data Model

Templates have been created for the creation of the different data models. At the time to defining the models

there will be a series of generic fields and others that will depend on the nature of the model.

Within the generic fields you will find the following:

Table 2: Generic field for Data Model

Field Mandatory Type Format Description

id YES String Unique identifier

type YES String Entity type it must be equal to DATAMODEL NAME

dataProvider YES URL Specifies the URL to information about the provider of

this information

source YES String The ID of the PIXEL Data Source

dateModified AUTO DateTime Last update timestamp of this entity (Read-Only

Automatically generated)

dateCreated AUTO DateTime Entity’s creation timestamp. (Read-Only

Automatically generated)

17

 https://fiware-datamodels.readthedocs.io/en/latest/
18

 https://www.fiware.org/developers/
19

 https://www.fiware.org/developers/data-models/
20

 https://www.fiware.org/2016/06/08/fiware-ngsi-version-2-release-candidate/
21

 http://fiware-datamodels.readthedocs.io/en/latest/Environment/doc/introduction/index.html
22

 http://fiware-datamodels.readthedocs.io/en/latest/Transportation/doc/introduction/index.html
23

 http://fiware-datamodels.readthedocs.io/en/latest/Device/doc/introduction/index.html
24

 http://fiware-datamodels.readthedocs.io/en/latest/Parking/doc/introduction/index.html

https://fiware-datamodels.readthedocs.io/en/latest/
https://www.fiware.org/developers/
https://www.fiware.org/developers/data-models/

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 44 of 65

name String A name to describe this entity

location or address GeoJSON Location of the data represented by a GeoJSON

geometry

address or location String Civic address of the data

refDevice RelationShip A reference to the device(s) which capture this data

5.2. PIXEL Initial Data Model
According to Princeton University

25
, “A data model organizes data elements and standardizes how the data

elements relate to one another. Since data elements document real life entities, places and things and the

events between them, the data model represents reality”. Thus, what the Data Model definition in PIXEL has

been tackled considering:

 What elements form part of the PIXEL system from a reality-representation point of view?

 Which and how many different entities will be used from different parts of the system?

 How to express them in a common fashion in order to store the global knowledge that the system

must have?

 Which are the structures and relations that could be inferred about them?

In order to answer these questions, an inductive methodology has been followed. Particularly, the Data Model

definition team conducted a three-step process that is outlined below:

1. To envision several short scenarios of usage of the system from different perspectives. The aim in

this step is to cover the basics of PIXEL usability and realise which kind of entities would be

needed to embed the information required to satisfy them. In this step the crucial words are

highlighted. The words highlighted will become entities of the data model.

The idea is to keep the level of deepness short, as we are aiming to define a global Data Model. It

is planned that each sub-component of the architecture (Operational Tools, Acquisition Layer,

Notification, Models) will have their own data model and database organization.

2. To create a tabular graphical definition of the Data Model. Following classic approaches, the first

structure of data per entity has been created in order to represent the reality. The idea is to have a

common grounding to be shared with all the Consortium and stakeholders to advance on ICT

development.

3. To enrich the explanation of the Data Model by adding a brief description of each entity and its

possible representation (e.g. field options).

Hereafter we include the activity and results of those steps:

1. Key sentences or scenarios of usage

One user of the system connects to PIXEL platform. He/she belongs to a stakeholder within the environment

of a port.

25

 https://cedar.princeton.edu/understanding-data/what-data-model

https://cedar.princeton.edu/understanding-data/what-data-model

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 45 of 65

This user requests a service from the system. This service can be a prediction (predictive algorithm) over an

operation of the port, the simulation of a model of one use-case, retrieving information from the hub or

visualizing the PIXEL dashboard.

This service will rely on performing several operations over data coming from heterogeneous data sources

within a port: sensors, legacy ICT systems or others. The most innovative service of PIXEL is the PEI.

In order to validate and demonstrate the PIXEL concept and its usefulness in the pilots, several KPIs will be

evaluated.

Thus, the initial Data Model will be comprised of the following entities:

 Port.

 Stakeholder.

 User.

 Data source.

 Model / PA (Predictive Algorithm). PEI will be considered as a special model. Both models and Pas

are invoked as a service.

 KPI.

2. Global Initial PIXEL Data Model

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 46 of 65

Figure 27: PIXEL Initial Data Model

3. Enriched explanation of Data Model entities:

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 47 of 65

PIXEL aims at creating a solution for (mainly) small and medium ports. Therefore, the basic entity

that will need to be stored in a global context of the system is the Port. Initially this data

representation will be composed by id, name, location and code (LOCODE
26

 code). Whenever the

system becomes more sophisticated this entity will be enhanced, including, for example: type of port

(according to D3.1 definitions).

Ports are usually managed by a Port Authority which, in turn, tends to rely some activities to

stakeholders that work within its environment. PIXEL contemplates several users that potentially

may come from any of those stakeholders. For that reason, the Stakeholder entity will be associated

to at least one port. Other fields are type (whether it is a terminal company, truck operator, etc.),

name and contact details. This can be enhanced in the future as it is supposed to be a document

based database.

The User is the basic entity interacting with the system. It is necessary to include a user as a separate

entity in the data model as this will be used for personalisation, security and configuration means.

One user will be always part of at least one stakeholder of at least one port.

The models and predictive algorithms will be the reference services invoked by users. By the time

of publication of a service (or PA), the admin may specify either a Docker image or a service

endpoint. Other important mandatory parameters are the input and output formats, in order to be able

to feed properly the models (or Pas) at execution time. Other optional parameters, but helpful for

deployment and execution is information related to required CPU (vCPU) and RAM. The PEI is the

most innovative proposal of PIXEL, but from the technical perspective, it is conceived as another

model.

KPIs are also an important entity in order to evaluate the port operations. According to the GA,

PIXEL should be able to provide both operational and environmental KPIs, which must be defined

by each port. Obviously, a native environmental KPI is represented by the PEI, which is fact, is a

composed KPI encompassing indexes, and eKPIs. Both of them will be modelled as KPIs according

to this datamodel. As can be observed in the previous Figure, it is possible to define some thresholds

in order to automatically monitor the status and detect patterns or anomalies.

Data Source is a basic entity in PIXEL, but must be adapted to the architecture proposed in PIXEL.

Therefore, one must distinguish:

o The original data source (Datasource), representing typically the information offered by

ports, sensors, third parties, etc.

o The final data source (IH_datasource), representing the information offered by the

information, with a certain data format and capable of being understood and interpreted by

models and predictive algorithms.

In order to transition from the Datasource to the IH_datasource, an NGSI agent is required to capture

the data and convert it properly into the common destination data format. This is the basis for

syntactic and semantic interoperability. FIWARE data models are the basis for this, as explained

before.

5.3. Data examples
The aim of this section is to show an example of data since they reach the data acquisition layer until the data

are pushed to Orion.

5.3.1. Integrated Surface Data

The example described will be Integrated Surface Data for that it’s necessary to run the Air Pollution Model.

The Data are provided by the NOAA (National Oceanic and Atmospheric Administration - US) all over the

26

 https://www.unece.org/cefact/locode/service/location

https://www.unece.org/cefact/locode/service/location

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 48 of 65

world using the ISH data format describe by this document: https://www1.ncdc.noaa.gov/pub/data/ish/ish-

format-document.pdf.

In this case, the Data Acquisition Layer has to first retrieve the raw data exposed by the public source, then

decode it and transform it to fit a PIXEL Data Model and finally it has to push it to Orion in order to make the

data available.

5.3.1.1. Raw Data

The data are available on a public FTP server: ftp://ftp.ncdc.noaa.gov/pub/data/noaa/2019/167160-99999-

2019.gz. So you have to choose the one matching your location and date period, and then download it.

The file contains multiple records encoded with the ISH format.

0186167160999992019010100004+37883+023750FM-

12+004599999V0203601N006719999999N999999999+00731+00571101171ADDAA106024031AW1411AZ

141021AZ241021MA1999999100651MD1710141+9999OD139901441999REMSYN09816716 17/// /3613

10073 20057 30065 40117 57014 60241 74144 333 90730 91128 555 60000 60163 60300=

Figure 28: Multiple records in ISH format

5.3.1.2. Transformations

To decode the data we rely on an open source parser that allow us to retrieve each record of data:

https://github.com/haydenth/ish_parser. After that the data will be transformed to make it available in a

PIXEL Data Format that is close to the FIWARE Data Model WeatherObserved
27

 (see next table).

Table 3: PIXEL Data format for this example

Model Field Source Field Format Transformation

Id NOAA:ISH:USAF:WBAN:yyyy-

MM-dd’T’HH:mm:ss

Type NoaaIsh

dataProvider ftp://ftp.ncdc.noaa.gov/pub/data/noaa

/2019/167160-99999-2019.gz

source NoaaIsh

Location Type: “point”, coordinates:

[+0.23.735, +37.882]

weatherStation USAF

elevation decoded from

ISH

dataObserved decoded from

ISH

“yyyy-MM-dd’T’HH:mm:ss” The date and time of this observation

in ISO8601 UTCformat. It can be

represented by a specific time instant

or by an ISO8601 interval.

Temperature decoded from

ISH

Default unit: Celsius degrees

windSpeed decoded from

ISH

Default unit: meters per

second

27

 https://fiware-datamodels.readthedocs.io/en/latest/Weather/WeatherObserved/doc/spec/index.html

https://www1.ncdc.noaa.gov/pub/data/ish/ish-format-document.pdf
https://www1.ncdc.noaa.gov/pub/data/ish/ish-format-document.pdf
ftp://ftp.ncdc.noaa.gov/pub/data/noaa/2019/167160-99999-2019.gz
ftp://ftp.ncdc.noaa.gov/pub/data/noaa/2019/167160-99999-2019.gz
https://github.com/haydenth/ish_parser
ftp://ftp.ncdc.noaa.gov/pub/data/noaa/2019/167160-99999-2019.gz
ftp://ftp.ncdc.noaa.gov/pub/data/noaa/2019/167160-99999-2019.gz

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 49 of 65

windDirection decoded from

ISH

Default unit: Decimal degrees

rawISHData The raw ISH

data trame

5.3.1.3. Final Data

Finally, the data is pushed to Orion using the corresponding JSON structure. The rawISHData is kept in order

to facilitate the integration with the Air Pollution model that is used to deal with this format.

{

 "id": "NOAA:ISH:167160:99999-2019-01-01T00:00:04Z",

 "type": "NoaaIsh",

 "dataProvider": "ftp://ftp.ncdc.noaa.gov/pub/data/noaa/2019/167160-99999-2019.gz",
 "source": "NoaaIsh",

 "dateObserved": "2019-01-01T00:00:04Z",

 "location": {

 "type": "Point",

 "coordinates": [+023.735, +37.882]
 },

 "elevation": "200",

 "temperature": 3.3,

 "windDirection": -45,

 "windSpeed": 2,

 "rawISHData": "0186167160999992019010100004+37883+023750FM-

12+004599999V0203601N006719999999N999999999+00731+00571101171ADDAA106024031AW1411

AZ141021AZ241021MA1999999100651MD1710141+9999OD139901441999REMSYN09816716 17///

/3613 10073 20057 30065 40117 57014 60241 74144 333 90730 91128 555 60000 60163

60300="

}

After that the JSON is pushed to ORION, and the Information Hub can be notifying that this information is

available.

5.3.2. Vessel Call

Another important data source we have to import is the vessel call provide by the ports. Each could provide

the same kind of information, but not the same way, same format and same temporality.

5.3.2.1. Raw Data

5.3.2.1.1. Piraeus

The data is provided every month with the past data through a CSV file sent to an NGSI Agent.

"SHIP NAME","COMPANY","AGENT","Î™ÎœÎŸ","SCHEDULED ARRIVAL DATE","SCHEDULED ARRIVAL TIME","ACTUAL

ARRIVAL DATE","ACTUAL ARRIVAL TIME","SCHEDULED DEPARTURE DATE","SCHEDULED DEPARTURE TIME","ACTUAL

DEPARTURE DATE","ACTUAL DEPARTURE TIME","CAPACITY","PASSENGERS TO ARRIVE","TRANSIT PASSENGERS","TOTAL

PASSENGERS ARRIVED","ARRIVAL RATIO","PASSENGERS TO DEPART","TRANSIT PASSENGERS DEPARTURED","TOTAL

DEPARTURED PASSENGERS","DEPARTURE RATIO","HOME PORT FLAG"

5.3.2.1.2. Bordeaux

A special component is built on Bordeaux side to push the vessel call data every time they arrive on the

PIXEL platform.

 {
 "id": "FR_BAS:9137870:4",

 "type": "VesselCallType",

 "amountOfHandle": 2010,

 "arrivalTime": "5 Jan 15 17:07:33",

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 50 of 65

 "berth": 449,

 "cargoType": "E.SORGHO VRAC",

 "loadingDirection": "unloading",

 "shipName": "LEZHEVO",

 }

5.3.2.2. Transformation

The idea is that the model developed on PIXEL works for every port that is able to provide the input data

necessary to run it. So, it will be necessary to transform those data to fit in a common Data Model.

For PIXEL has been defined a common Data Model for Vessel Call matching each data source but also each

type of vessel (cargo or passengers). The transformation job of the NGSI agent is to fulfil the target data

source with the information provided by the source.

Table 4: Header fields

Field Mandatory Type Description

id YES String Unique identifier

type YES String Entity type. It must be equal to VesselCall

dataProvider YES URL Specifies the URL to information about the provider of this

information

source YES String The ID of the PIXEL Data Source

dateModified AUTO DateTime Last update timestamp of this entity (Read-Only.

Automatically generated)

dateCreated AUTO DateTime Entity’s creation timestamp. (Read-Only, Automatically

generated.)

name String The ship name

location or address GeoJSON Location of the data represented by a GeoJSON geometry

address or location String Civil address of the data

refDevice Relationship A reference to the device(s) which captured this data

Table 5: Specifics Data fields

Field Mandatory Type Description

IMO YES String Ship international identification

journeyid YES Number It identify the rotation of the boat to detect different vessel

Call from the same ship and same day

company String Ship company name

agent String

unlocode String https://www.unece.org/cefact/locode/service/location.html

arrival_port_area DateTime Ship arrives at port area

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 51 of 65

arrival_dock DateTime Ship on dock

scheduled_arrival

_dock

 DateTime Scheduled date for ship on dock

start_work DateTime Work start

end_work DateTime Work finished

leave_dock DateTime Ship leaves dock

scheduled_leave_

dock

 DateTime Scheduled date for ship leaves dock

leave_port_area DateTime Ship leaves port area

dock String The dock identifier

work_descr String Work description

operation YES String The type of operation

cargo_type YES String Cargo description or PASSENGERS

cargo_fiscal_type String Cargo Fiscal type (Only for French port?)

empty_container Number The number of empty container

full_container Number The number of full container

capacity YES Number The weight of the cargo (in tons) or the capacity of

passengers

passengers_to_ar

rive

 Number

passengers_to_de

part

 Number

transit_passenger

s

 Number

The fields of Table 5 are generic and not necessary fully applicable for all ports.

5.3.2.3. Final Data

For each entity generated by the transformation process, the NGSI will push it on the Orion database to make

it available for the information Hub

For example the data generate for Piraeus look like this:

{

 "id": "GRPIR:VesselCall:9228356:2018-08-01T07:30:00+02:00:1",

 "type": "VesselCall",

 "source": "GRPIR:VesselCall",

 "dataProvider": "CSV File",

 "location": {

 "type": "point",

 "coordinates": [

 23.635979,

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 52 of 65

 37.939013

]
 },

 "imo": "9228356",

 "name": "JEWEL OF THE SEAS",

 "company": "ROYAL CARIBBEAN CRUISES",

 "agent": "ΙΝΣΚΕΙΠ ΝΑΥΤ/ΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ Α.Ε",

 "journeyid": 1,

 "unlocode": "GR PIR",

 "arrival_dock": "2018-08-01T07:30:00+02:00",

 "scheduled_arrival_dock": "2018-08-01T07:30:00+02:00",

 "leave_dock": "2018-08-01T20:00:00+02:00",

 "scheduled_leave_dock": "2018-08-01T20:00:00+02:00",

 "operation": "both",

 "cargo_type": "passengers",

 "capacity": 2700,

 "passengers_to_arrive": 2,

 "passengers_to_depart": 7,

 "transit_passengers": 2670

}

6. Deployment and scalability

In software development, deployment refers to the phase when, once all developments fulfilling the features

are ready, functional and non-functional requirements, the software is installed in the final servers where it

will run in production conditions to offer the benefits that was conceived for. This phase not only consists of

the process of installing the software in the final destination, but also organising the number of nodes where

the solution will be installed, how these nodes communicate together, which communications they have with

external resources or services and what are the maintenance protocols, among others.

In PIXEL, the deployment deserves special attention since the same architecture will be deployed in four

different scenarios that will provide different resources and will work with different setups. It will be

necessary to put the focus on the different physical deployment options available for PIXEL (both at the level

of solution and at the level of hosting of its infrastructure and/or data. For that, section Ports deployments will

speak about the deployment in the different ports. Also concepts that were mention in: Applied Agile concepts

(Containers, CI/CD and APIs) will be presented in first sections. Obviously, it will be necessary to speak

about Environments and testing (in order to introduce the work that will be made in D7.1). Finally, linked to

the concept of deployment we will analyse the scalability and the deployment architecture.

6.1. Containers
Due to the ever-increasing number of devices that requires connectivity to applications or platforms it

becomes necessary a way for scale these applications independently. The answer is containers.

Containers allow applications to be deployed reliably and migrated quickly between various computing

environments by packaging code, configuration settings and dependencies into a single object.

The use of containers is very characteristic in Agile Developments. They approach to the focus that IoT

solutions require.

The aim of containers is to divide complex systems into microservices (see Figure 29, different services

included in the container used for PIXEL Dashboard and Notifications).

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 53 of 65

Figure 29: Docker for PIXEL Dashboard and Notifications

Advantages of the use of containers:

 Portability. Possibility to deploy the application in any environment on any operating system.

 Security. Containers act as an isolated system. They do not interact among them.

 Distributed Integration. Containers facilitate CI (Continuous integration) and CD (Continuous

delivery).

6.1.1. Docker

Among container managers, Docker (www.docker.com) is the most widely used to encapsulate applications

into software packages called containers, that are more lightweight than virtual machines. Docker offers

several features: cross-platform, versioning, reusability, shared libraries and repository. There is a huge

community of Docker, and many applications are already available for an easy installation as images in the

Docker hub (https://hub.docker.com/). One of the main outputs from the PIXEL project is also to distribute

the developed components as open source, possibly using GitHub or Docker hub (or both).

Docker can be considered as an evolution of LXC (LinuX Containers), also known as microcontainers and

also linked to LXD (manager of LXC). Though the approach in LXC is similar and the memory footprint can

be quite reduced, it is only designed for Linux environments and does not have a wide community behind

compared to Docker. Kubernetes, and other orchestration engines, typically only support Docker.

6.2. Distributed integration
The architecture of PIXEL (PIXEL RA) is a series of interconnected modules. The development of

applications / platforms more modular satisfy the need for faster and simpler integration of new services and

also facilitates continuous integration (CI).

This is the same trend that is followed in IoT development. It has moved from centralized control to a

distributed model and collaborative participation.

Continuous delivery (CD also known as CI) is the ability to get changes of all types (including new features,

configuration changes, bug fixes and experiment) into production, or into the hands of users, safely and

quickly in a sustainable way. Next pictureFigure 30 depicts the cycle follow for a CI in a development.

Figure 30: Cycle of Continuous Integration

http://www.docker.com/
https://hub.docker.com/

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 54 of 65

6.3. APIs
The capacities of communications for existing applications increase daily. Among the reasons are the

following:

 Increase in service providers (public / private services).

 Increase in the number of clients.

This implies that point-to-point integration is not sustainable. So, how will be possible the communication /

interaction among all actors? The answer of this is with the use of APIs.

An API
28

: “Is an interface or communication protocol between a client and a server intended to simplify the

building of client-side software”.

With the use of APIs the UI can get access to IoT device data without need to know the hardware interfaces or

device drivers.

The use of APIs allows access to applications, thus improving access to data. This has favored the creation of

applications in unrelated environments as well as increasing the exploitation of data by being accessible to

third parties.

APIs allow to use software (platforms, applications) written in several programming languages. This is

because the APIs have a unified architectural style, REST.

PIXEL will have APIs in each layer with the aim to facilitate the communication among it.

Figure 31: PIXEL APIs

These APIs will be used in WP7 task 7.1 to test the different modules.

Next section pretends to comment very briefly the APIs that will have each layer.

6.3.1. PIXEL APIs

6.3.1.1. Data Acquisition

The PIXEL Data Acquisition is composed of several components. Each of them will expose one or more

APIs:

 FIWARE Context Broker Orion. This component exposes several APIs.

o NGSI v2 API
29

. Used to manipulate the data. It is a HTTP REST API used to create, update,

delete and request the entities and their attributes.

28

 https://en.wikipedia.org/wiki/Application_programming_interface
29

 http://fiware.github.io/specifications/ngsiv2/stable/

https://en.wikipedia.org/wiki/Application_programming_interface
http://fiware.github.io/specifications/ngsiv2/stable/

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 55 of 65

o Subscription API
30

. It allows other components to notify by the Context Broker when entities

are modified.

 NGSI Agent. The NGSI Agents are designed to connect external data to the Data Acquisition Layer

of PIXEL through the Context Broker. To communicate with the Context Broker NGSI Agents use

the NGSI v2 API exposed by Orion. To connect to the Data Source, it will use any kind of relevant

API or communication protocol that the data source can communicate with.

 FIWARE Cygnus. Cygnus is designed to send data from the Context Broker to several solution of

data persistence. To communicate with Orion, Cygnus will expose Notify API that will be register to

the Context Broker with the Subscription API.

 FIWARE Comet STH. Like Cygnus, Comet implement a Notify API in order to allow Orion to push

data it in, but it is better to use Cygnus for that purpose. Comet proposes its own HTTP REST API to

access raw
31

 and aggregate
32

 data.

6.3.1.2. Information Hub

The PIXEL Information Hub API is responsible for the interaction of the outside world with the Information

Hub. Because of the Information Hubs data archiving nature, the information will flow both upstream and

downstream. The Information Hub will have to handle simultaneous reading and writing from LTS and STS,

for instance a constant inflow of data from sensors while simultaneously updating client applications with

data. This is why operations of writing and reading will be segregated into multiple API entry points. The

three components providing an API are:

 Data collector. Is responsible for handling the inflow of data into the PIXEL Information Hub from

the PIXEL Data Acquisition system. The collector interface allows for custom implementations based

on capabilities of the source connected. Data collector API will mostly use the PUSH mechanism via

an exposed REST API endpoint for acquiring data, but will also be able to fall-back to old-style

periodic PULL system for data sources that do not support PUSH.

 Data extractor. Is responsible for handling the outflow of data from the PIXEL Information Hub to

any third party applications connected to it. Access to the Data Extractor instance node REST API

will be routed through the API Gateway leveraging its authentication and authorization systems

among others. Generally, the Data Extractor will be responsible for retrieving data from database

storage systems connected to the Information Hub. Because of some limitations of the connected

database sources the Data Extractor instance node will also have the ability to join data from multiple

queries in memory, execute simple transformations and enrich the extracted data and pass it to the

connected client application through the API Gateway.

 Data redactor. Is responsible for execution of reduction and aggregation algorithms, which can be

provided by the customer. This component is not exposed through REST API, but provides an

interface for the implementation of custom Data reductors. This allows implementation of custom

reduction, aggregation or other data transformation algorithms provided by customers.

6.3.1.3. Operational Tools

The OT API is responsible for providing all implemented functionalities to the outside world. The OT UI is

just an example for a visual client, but for automating executions (no direct user involved) it should be

possible to invoke directly the API. For example, VIGIEsip in the Port of Bordeaux may directly interact with

the OT API and provide its own UI to the user. Other components as part of the PIXEL architecture may also

use directly the OT API. A complete set of features is not the aim of this deliverable, as this will be provided

in D6.5. However, some high-level features have been identified that this API will have to cope with:

30

 https://fiware-orion.readthedocs.io/en/master/user/walkthrough_apiv2/index.html#subscriptions
31

 https://fiware-sth-comet.readthedocs.io/en/latest/raw-data-retrieval/index.html
32

 https://fiware-sth-comet.readthedocs.io/en/latest/aggregated-data-retrieval/index.html

https://fiware-orion.readthedocs.io/en/master/user/walkthrough_apiv2/index.html#subscriptions
https://fiware-sth-comet.readthedocs.io/en/latest/raw-data-retrieval/index.html
https://fiware-sth-comet.readthedocs.io/en/latest/aggregated-data-retrieval/index.html

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 56 of 65

 Publishing models and predictive algorithms in the PIXEL platform. Even if this can be a service by

its own, it should be somehow assisted by or synchronized with the Operational Tools.

 Creation, edition and execution of models and predictive algorithms, both in runtime or as scheduled

jobs.

 Access to the OT data model, at least to part of it (e.g. model configuration, model result, etc.).

 Creation and edition of Event Processing rules.

 Self-documented API. By means of providing an open API (e.g. Swagger file), developers will easier

and better familiarize with the interface, facilitating internal development throughout the project as

well as transferability to other ports.

6.3.1.4. Dashboard

This API will be in charge of communicating the interface with the rest of the components. It is secured

(making use of the implementation of FIWARE IDM in PIXEL). In order to have access it will be necessary

to have a valid user, so all calls to the rest of the components that come from the API are considered secure.

The main features of this API are:

 User Management. User authorization and authentication, creation of users, etc.

 Display Management. Module in charge of creating visualizations to manage them.

 Manage visual dashboard configurations. Manage visual aspects related to the dashboard (Zoom,

Widgets, etc.).

 Communication with OT module. UI responsible for executing models, show simulations, etc.

6.3.1.5. Security

In this section we are going to see the APIs that expose each one of the components included in this module:

 FIWARE OAuth2 Server – Keyrock. Keyrock offers the full functionalities to manage users,

organizations, roles. Keyrock exposes all of these features through an HTTP REST API
33

.

 FIWARE – AuthzForce. Provides the following APIs:

o PDP API (Policy Decision Point in the XACML terminology). Provides an API for getting

authorization decisions computed by a XACML – compliant access control engine.

o PAP API (Policy Administration Point in XACML terminology). Provides an API for

managing XACML policies to be handled by the Authorization Service PDP.

The full API (RESTful) is described by a document written in the Web Application Description

Language format (WADL) and associated XML schema files available in Authzforce rest-api-model

project files
34

.

XACML is the main international OASIS standard for access control language and request-response

formats, that addresses most use cases of access control. AuthzForce supports the full CORE XACML

3.0 language; therefore it allows enforcing generic and complex control policies.

 FIWARE – Wilma PEP Proxy. Wilma is an HTTP Reverse Proxy component that can communicate

with Keyrock and AuthzForce to ensure that sends a request to Wilma is allow executing this API

call.

6.4. Environments and testing
Before deploying an application in production, it is necessary to test it. For this reason it is important to have

different environments. An environment can be defined as a configuration of a set of nodes or even one

single node that respond to particular conditions that are in favour on different stages in the development

33

 https://keyrock.docs.apiary.io/#reference/keyrock-api
34

 https://github.com/authzforce/rest-api-model/tree/release-5.3.1/src/main/resources

https://keyrock.docs.apiary.io/#reference/keyrock-api

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 57 of 65

phases. There are several ways to organise the environments in a software engineering project. A common

standard way is typically:

 Local: the workstation of the developer/programmer. It is typically customised by the developer

following common guidelines of the project.

 Development: a server where a development teams have common development resources such as

databases, acting as a common sandbox for multiple purposes.

 Integration: a common server where the integration works (test, builds, etc.) is performed in an

independent (usually scripted) way. The integration server is used to detect side effects in

developments that imply different functional groups that interact among them.

 Pre-production or staging: a mirror of the production environment that is used to test the software in

the closest conditions to the real environment where it will be operating (production). The primary use

of a staging environment is to test all the installation/configuration/migration scripts and procedures

before they are applied to a production environment. Other common use is load testing to check the

performance of the system in near-real conditions.

 Production: this environment is where the real user or real user application interact with the new

software. This environment is the most critical part since it interacts with all the working systems of

the user, so that any error or problem introduced by the new software can lead to a complete stop or

general malfunction of the systems.

To minimise the effects of switching context and ensuring the proper accomplishment of the requirements, it

is advisable to prepare software test in the different environments and with different objectives. In PIXEL,

these tests will be linked to the different use cases.

In PIXEL, there will be deployed at least the local, development and integration environments, as well as the

production provided by ports. In first iteration of this document (D6.1) only the two first are already being

used. But now, the third is ready to use because it will be necessary for the WP7 task 7.1 (month 18).

The tests can be divided into two large blocks: Functional and Non-Functional. PIXEL will focus on

functional testing (included in the scope of D7.1). Within the functional we find the following types of tests:

 Unit tests.

 Module tests.

 Integration tests.

In this project, the testing principles followed will be
35

:

 Usability. Due to the great complexity and the number of devices this factor is very relevant. Tests

will ensure the ease of use, reception of notifications, etc.

 Security. It is a key factor in IoT. All the devices are connected between them and the data must be

accessible. Communication protocols must ensure data integrity and privacy (this can be solved for

instance by using protocols that support TLS
36

/SSL
37

).

 Connectivity. Check if the system is available as well as the different networks which is composed

of.

 Compatibility. Due to the number of devices involved in an IoT platform and the different features

employed. Compatibility tests (multiple operating system versions, browser type and respective

versions, communication modes) are mandatory.

 Pilot testing. The best manner to test an IoT application is in its specific use case. Pilot testing is a

need. The application must be exposed to a limited number of users in the real field. Moreover, this

can help the production deployment. This will be performed in the different phases of the PIXEL

pilots.

35

 https:// www.softwaretestinghelp.com/internet-of-things-iot-testing/
36

 https://www.globalsign.com/en/blog/ssl-vs-tls-difference/
37

 https://www.digicert.com/ssl/

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 58 of 65

 Regulatory or legislative testing. It is important to check that an application passes the different

regulatory / compliance checkpoints.

 Upgrade testing. This aspect is related with the compatibility feature. When we upgrade the

application, we must be sure that the overcome upgrade related issues (multiple protocols, devices,

operating systems, firmware and hardware) have disappeared.

6.5. Scalability. Multi-Instance vs Multi-Tenant
Scalability is the ability of a system to preserve its average performance as the number of target elements

(requests, nodes, services, etc.) increases. Another definition could be: the way to manage the growth of a

system so that the quality of it (services offered) is not affected.

How a system will be deployed have consequences in their scalability. Exist two terms that refer to

architectural principles related to deployment: Multi-Instance and Multi-Tenant. What are the characteristics

of each of them?

 Multi-tenancy
38

: Is the ability to offer the same service to different customers from a single instance

of software. In other words, a single code development can serve multiple users by separating

sensitive information from each other that is only visible to them.

Figure 32: Multi-tenancy

Each client of the service is considered as a tenant, this allows administrators to customize elements

of the application (such as interface colours), but does not customize the code as such.

In this type of architecture, it is important to emphasize that a client is not necessarily a unique user; it

can be a group of users.

Among the advantages of this type of architecture we can find the following:

1. Profitability. Costs distributed among all customers.

2. Easy updating. Only one instance needs to be updated.

3. Information security per client. It has a separate schema for each user.

4. Optimizes the use of server resources.

Among its disadvantages we find the following:

1. Personalization. Difficulty in the use of specific characteristics for a client.

38

 https:// platzi.com/blog/multi-tenant-que-es-y-por-que-es-importante/

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 59 of 65

2. Isolation. Since different tenants share the same instance of software and hardware, it is

possible for one tenant to affect the availability and performance of software from other

tenants.

3. Simultaneous updating. Despite of being an advantage because, it only implies to update an

instance, it can become an inconvenient since the simultaneous updating of software may not

be desirable for all the tenants.

4. Single point of failure. If the application has an error, it will fail for all clients.

 Multi-Instance: Unlike the previous option in this case each client runs its own instance separate

from the application.

The advantages of this type of architecture are the following:

o Safer than the previous case, it uses isolated environments.

o It allows greater flexibility and control of configuration, customization, and updates.

o Less risks of attacks affecting data security.

o Ability to migrate the instance to a local server or other cloud provider.

o The architecture allows for greater growth and flexibility of deployment.

The following image illustrates the characteristics of each option:

Figure 33: Characteristics of multi-Tenant and multi-Instance

Reasons to select multi-instance over multi-tenancy in PIXEL

Following the use cases and requirements of the project, the deployment of PIXEL will be done following the

multi-instance architectural principles. The reason behind this decision is that multi-tenancy has demonstrated

to be more demanding in resources and be potentially less secure and lack of privacy
39

. Considering the

different contexts (ports) where PIXEL is designed to be deployed, having full control on each instance is an

asset in order to be more adaptable to the circumstances of each scenario. This will be tested in the four

different pilots and the scale-up actions envisaged in the project.

Also, having multi-instance is a better decision in terms of sales and marketing, since it is more acceptable

from the point of view of a company to have the data completely separated from other user that can

incidentally be the competition. Multi-instance architecture allows for easy migration from and to the cloud,

or from and to one cloud hosting provider to another. With a multi-tenant architecture, it is not possible to

move instance from the cloud to the premise, and vice versa, they are blocked.

39

 https:// fayebsg.com/2013/05/multi-tenancy-vs-multi-instance/

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 60 of 65

The conclusion is that multiple instance architecture is of great benefit to companies that value control over

their systems, customization capability and flexibility, as well as the agility to respond to market changes and

evolving business needs.

The following image illustrates with a diagram the comments throughout the section.

Figure 34 Differences between Multi-Tenant and Multi-Instance architecture
40

6.5.1. Deployment of PIXEL platform

The way to execute the deployments in PIXEL will be with the use of containers (dockerization). In this way

it is possible to simplify the cost in time of the deployments (they will be faster) and that the different modules

of PIXEL are kept isolated.

The final objective is to achieve one container per module that contains all the elements that are part of that

component.

In the case of the Dashboard and Notifications component, the following image illustrates the composition of

that container:

Figure 35: Elements in the Docker of Dashboard and Notifications

The ideal way to Docker the different PIXEL modules is with Docker Compose. It is a tool that allows us to

create multiple container applications. It is very easy to start / stop / build a platform / application consisting

of groups of related Docker containers.

Docker-compose allow us to define each one of the containers that we are going to implement, as well as

characteristics for each container implementation.

An advantage of Docker-Compose is that it allows us to create configuration variants according to the

environment. Therefore, in a very simple way, different container compositions can be created according to

the environment.

40

 http:// www.contactcenterarchitects.com/dont-make-the-common-mistake-of-believing-multi-tenancy-is-the-same-as-

multi-user-or-multi-enterprise-clouds-multi-tenancy-vs-multi-instance-in-ccaas-ucaas-clouds/

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 61 of 65

Figure 36: Different Docker-compose per environment

6.6. Deployment architecture. Cloud vs On-premises vs

Hybrid
One of the first steps in any development should be to select the type of implementation

41
: On premise (own

servers) or Cloud.

On premises: This refers to the private data center that companies operate and maintain ‘at home’. Widely

known as “On-Premise”, the key benefit is the control it offers.

On-site hosting software means that companies can decide exactly what systems they want and where they are

located, giving them the flexibility to create and ad-hoc system that exactly suits their needs.

The downside is the cost. The costs associated with installation, maintenance and various upgrades add up.

Together with costs for electricity, physical space, cooling equipment and power supply tools this can be quite

costly.

A viable alternative is the Cloud. It involves renting virtual server space that is hosted on the Internet and

accessed remotely.

Cloud solutions tend to be more expend than internal servers
42

. But the pay-as-you-go offer makes it ideal for

smaller businesses that do not want to invest in IT costs during their initial development. The ability of cloud

users to scale up and down relatively quickly is ideal for businesses that are on the verge of rapid

transformation. It also adapts to those with a mobile or flexible workforce, as it can be accessed from

anywhere as long as there is an internet connection.

Both implementations have advantages and disadvantages. In PIXEL, the development strategy is going to be

flexible to adapt to different port needs. The following criteria have been identified to decide on the

deployment strategy I each instance of the platform:

 Financial capacity. The ability of the port to invest in new resources (required infrastructure, software

licenses, support)

 Technical knowledge. The capacity of the IT team or port stakeholders to maintain and/or evolve the

systems.

 Customizations needed. Possibility to customize my application according to my business.

 Integrations expected. Possibility to integrate our system with other solutions.

There would be a third way that would be Hybrid. Companies do not have to choose just one of the above

options to satisfy 100% of their demands. The hybrid solution would be one in which an organization uses a

combination of on-premises and cloud services. It can offer flexibility by allowing workloads to shift between

the two when capacity and costs change. Workloads and confidential data can be hosted in the private cloud,

with less critical workloads than the public cloud. If an enterprise has regulatory requirements for data

handling and storage, this can be provided in the private cloud.

What deployment option is safer?

There is not an easy answer to this question, it depends in great measure of the security application and how

they control their access. The reason is that the ports have different policies for their data protection, as we as

very different strategies for integration or service sharing.

Next sections will bring more light on how the deployments in the ports will be.

41

 https:// www.telehouse.net/resources/blog/september-2018/on-premises-vs-cloud-vs-colocation
42

 https:// servicemuse.com/cloud-vs-on-premises-vs-hybrid/

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 62 of 65

6.6.1. Ports deployments

6.6.1.1. Server requirements

PIXEL platform is designed to be completely modular and to avoid coupling between components. As

commented in section 4 and 6.1, one of the drivers of this modularity is the use of Docker. Although the use

of containers allows for other server topologies (such as cluster-based topologies with container

orchestration), at PIXEL the approach has been a classic one in which services (or modules) are separated into

different nodes, and these nodes run on different servers. The migration to cluster architecture is simple and

intuitive as long as all the services and component are already defined in containers as atomic units.

In PIXEL there are different deployment environments:

 Development: This environment is used for developing the different modules; it comprises a varying

number of servers created for programming and unit testing specific purposes.

 Integration and Test. These environments keep the different software releases and are used to test the

modules integration. This methodology allows the decoupling of the different development teams of

the project, since the releases can be done separately among modules.

 Demo. This environment holds an online demo with the latest platform features. It contains some real

data integrated facilitated from participating ports and some simulated or differed data for those

services that still are not ready. This environment allows live-demonstrations in dissemination events,

congresses or stakeholders interviewers.

These three environments are used for port-generic purposes and they have data, fixtures and configurations

specific for their purposes. They are hosted in the cloud IaaS service FIWARE Labs, liaised by the partner

ORANGE to be used free of charge.

In the pilots, however, the deployments will be a production environment and therefore, the configuration

must ensure the expected level and quality of service, as well as provide appropriate concern division in case

of troubleshooting.

Thus, a recommended and minimum set of resources has been defined for the port deployments:

Table 6: Recommended and minimum set of resource for port deployments

 Minimum Recommended Kind

 VCPU RAM Disk VCPU RAM Disk

DAL Orion + Agents 4x 4GB 80GB 4x 8GB 80GB APPLICATION

IH

IH + Kafka 4x 8GB 80GB 4x 8GB 80GB APPLICATION

Elastic 4x 8GB 160GB 8x 16GB 1TB DATABASE

OT

Backend

8x 16GB 80GB

8x 8GB 80GB
WEB SERVER,

APPLICATION

Algorithms (1 per

algorithm or

model)

8x 8GB 80GB APPLICATION

DN
Portal, dashboards

and alerts
8x 16GB 80GB

WEB SERVER,

APPLICATION

Security Keyrock

4x 16GB 80GB

4x 8GB 40GB APPLICATION

Pilot

apps

Pilot specific

applications

8x 8GB 80GB APPLICATION

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 63 of 65

The server must have visibility among them, this is, network access and for configuration and management a

VPN access is required.

PIXEL ambition is to have results capable to be extendible, generalizable and affordable for all-sized ports in

Europe and the world. To achieve this, use cases and configuration must be considered, in order to address a

high share of future requirements and constraints in different organisation. The benefit of having 5 ports

organisations (4 ports + 1 logistics hub) in the project is that they can bring different policies and IT strategies

that can enrich the vision of the ICT developing staff of the project. This is the case on solution deployment.

Although in general all ports have their way to address the deployment of new IT applications, their strategies

are completely different. The following sub-sections describe briefly how these deployments will be

performed in each participant port.

6.6.1.1.1. Bordeaux

In Bordeaux, the port will choice between two solutions to host PIXEL virtual machines:

1. On an external datacenter (like VIGIEsip).

2. On their own datacenter.

This means that the port will create a set of virtual machines with the dimensioning provided and deploy the

containerized solution on a datacenter.

6.6.1.1.2. Piraeus

In Piraeus, the servers will be deployed internally in port premises. They will rely on existing infrastructure at

the port.

6.6.1.1.3. Monfalcone

In Monfalcone port + SDAG pilot, a configuration near to minimum will be initially deployed. This will let

the project to test the platform in constrained conditions and assess that the planned performance is achieved.

In this pilot, a CENTOS base distribution will be used for servers, instead of Ubuntu. As for the

containerisation, this is not an issue for PIXEL.

In case of experiencing limitations in performance due to the lack of resources, the pilot partners (in particular

INSIEL, who will be the partner providing the servers) will commit more resources to ensure the validity of

the pilot and the achievement of the objectives.

6.6.1.1.4. Thessaloniki

The port of Thessaloniki will use a hybrid deployment, since some of the resources will be hosted at the port

and some other will be provided as a cloud service. The cloud service will be FIWARE Labs (the same used

for the development and integration purposes). This will allow the project to assess the performance of the

solution in hybrid deployments.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 64 of 65

7. Conclusion and future work

7.1. Conclusion
This document contains the second version of the PIXEL IoT platform architecture and design. While the first

version, released in M12 (April 2019) contained an analysis of the prominent reference architectures, the

description of the building modules and the sequence diagrams according to the requirements gathered, this

document is more focused in the integration and data processing and exchange inside the platform.

The document revises the concept of reference architecture and functional architecture of the platform,

complementing the information already provided in D6.1. Integration between the different architecture

modules and the external systems is explained, as well as the conditions for deployment in ports, as an input

for WP7.

The current design will be, together with D6.1 the foundations for the developments and integrations

performed during the remaining tasks in WP6. This design shows a modular platform that fully covers the

requirements gathered from the consortium, stakeholders and the Grant Agreement. The modules are designed

to be independent and are integrated via APIs, which will be reported in D6.5. The four modules that complete

the data extraction, processing and visualization process (data acquisition layer, PIXEL information hub,

operational tools and dashboards and notifications) are complemented by a security layer that provides

security by design to all the data and users in the platform, enabling advance rules and fine-grained

authorization access to resources. The document also revises the main data models currently analysed, where

some others are still under consideration for the different data sources.

Finally, a general vision of the deployment strategies envisaged a review of the current deployment

arrangements and the specific particularities at the ports.

7.2. Future work
This document has been written based on 6 months of work (12 – 18) after the release of D6.1 and is the

definitive version of the PIXEL architecture.

This second version also contains architectural details such as the standard deployment schemas proposed for

the different ports, APIs of the different functional modules and changes that have occurred since the first

version of this deliverable (D6.1).

Although this document is the closing result of the task T6.1, the technical work at work package level

continue and, given the nature of the project, minor changes (refinements) could occur at platform level, once

the pilots start and on-site validation is performed. If those changes exist and are significant, the document

will be extended with an annex of changes by the time of finishing the pilots.

The implementations derived from the documents D6.1 and D6.2 will last until month 26 and will be reported

in D6.4 and D6.5.

 D 6.2 – PIXEL Information System Architecture and design

 Version 1.0 – 31-October-2019 - PIXEL
©

- Page 65 of 65

References

[1] IoT-A (Internet of Things Architecture), “Project Deliverable D1.1 – SOTA report on existing integration

frameworks/architectures for WSN, RFID and other emerging IoT related Technologies”, 2011.

[2] I. Ishaq, D. Carels, G. K. Teklemariam, J. Hoebeke, F. Van den Abeele, E. De Poorter, I. Moerman and P.

Demeester, "IETF standardization in the field of the internet of things (IoT): a survey," Journal of Sensor and

Actuator Networks, vol. 2, pp. 235-87, June 2013, 2013.

[3] "The Internet of Things Reference Model", 2014, [online] Available:

http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf

[4] Perry Lea.Internet of things for architects. IoT Architecture and Core IoT Modules. Birmingham: Packt

Publishing Ltd; 2018. p. 26-38.

[5]Fremantle, Paul. (2015). A Reference Architecture for the Internet of Things.

10.13140/RG.2.2.20158.89922.

[6] Krčo, Srdjan, Boris Pokrić, and Francois Carrez. "Designing IoT architecture (s): A European

perspective." 2014 IEEE World Forum on Internet of Things (WF-IoT). IEEE, 2014.

[7] "IoT Security", [online] Available:

https://hellofuture.orange.com/app/uploads/2019/01/181220_OrangeTGI_LivreBlanc_Ill367_VA.pdf

https://hellofuture.orange.com/app/uploads/2019/01/181220_OrangeTGI_LivreBlanc_Ill367_VA.pdf

