
loT for environmental leverage in European ports

Aristos Halatsis

Baltic Ports Conference 2019 Stockholm, September 6, 2019

The context

Gross weight of goods transported in European Ports in 2017 (thousand tonnes - Source: Eurostat)

The challenges faced by (especially) the long-tail ports:

- **Efficient data capture** to continuously drive decision making is still a challenge
- Heterogeneous operational data integration still leaves much to be desired
- Expected environmental impact of operational decisions remains unclear to a large extent
- Commonly agreed standardised practices for assessing, integrating and reporting the environmental impact of port operations are missing
- Digitalisation moving at a slow pace in most long-tail ports

PIXEL — Where IoT meets the Port of the Future

- PIXEL: Port IoT for Environmental Leverage
- Topic: MG-7-3 The Port of the future
- Duration: May 2018 April 2021 (36 months)
- 15 partners from 7 countries (ES, SI, IT, FR, HR, EL, UK)

Vision

A Port of the Future in which **small and medium ports** are also innovators in terms of environmental sustainability

Mission

To bring the **Sustainable** Port of the Future paradigm to the complete spectrum of ports

What we do — The PIXEL innovation backbone

Integrate operational data from IoT devices & systems, to continuously feed monitoring, simulation & prediction **Simulate, predict & optimise**, port operations to reduce environmental impact, using a scaling approach based on data availability

Standardise & integrate port environmental impacts into a global metric

Monitor and inform port personnel & stakeholders on

environmental and operational aspects

IoT integrated platform

focused on automatic collection & processing of heterogeneous live data streams

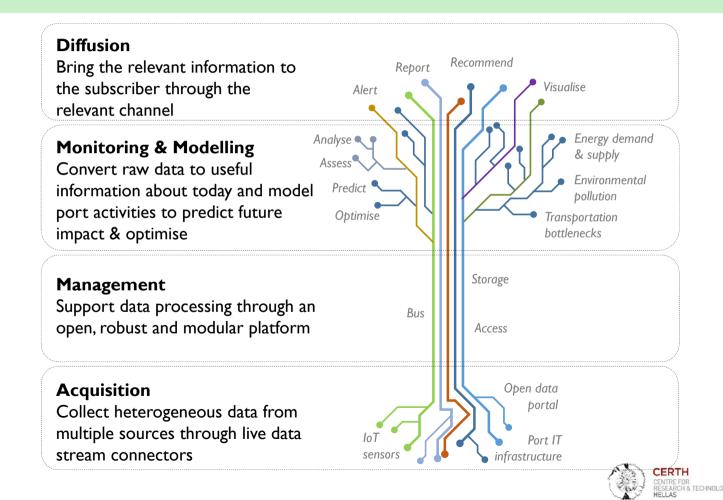
Information hub and optimisation operations through smart models & operational tools (energy, transportation, pollution and port-city integration)

Port Environmental

Index (PEI) as a quantitative composite indicator of the overall environmental performance of a port

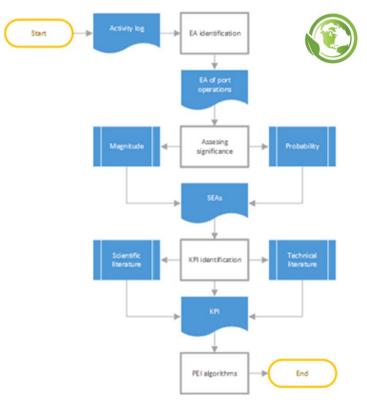
Dashboard & notification

component, for decision support & information provision through the appropriate channel (e.g. API, email alert, etc.)


IoT as horizontal facilitator

PIXEL services for port environmental leverage

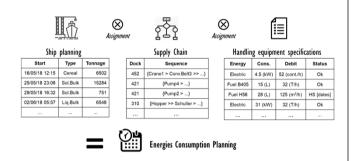


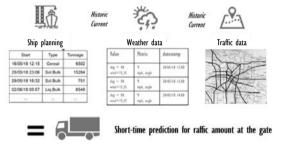


An IoT-facilitated Port Environmental Index

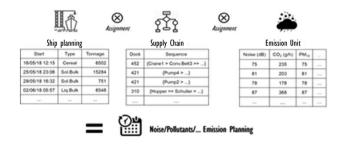
A global indicator (Port Environmental Index) of the environmental impact of ports, that is:

- extends previous initiatives aimed at the assessment and steering of port environmental performance
- designed to be impact-oriented
- integrating all environmental impacts in one composite indicator while allowing impact-level drilling-down
- implemented taking advantage of the opportunities of real-time measurement through the use of IoT devices
- incorporated in the PIXEL platform services




The PIXEL predictive models

Energy demand/supply model

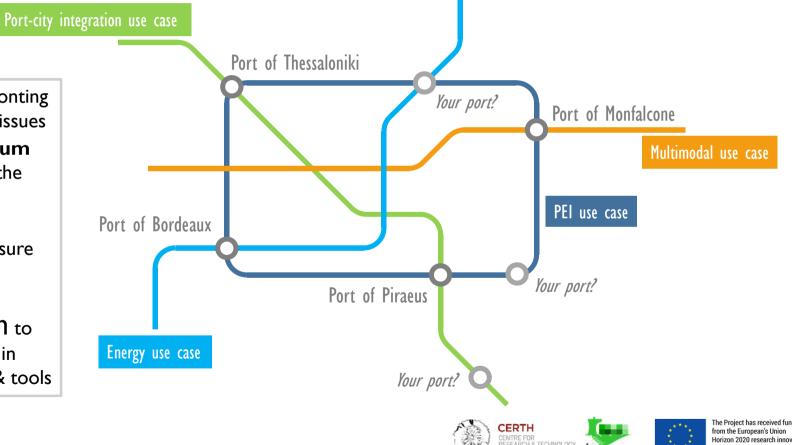

- Predicts energy consumption based on a mixed use of handling equipment specifications (based on port activity), realtime consumption sensors and temporal conditions (e.g. berths' lighting & building heating requirements during winter months)
- Forecasts solar energy production based on irradiance data and weather conditions (sensor measurement or satellite-based tools)
- Balances energy consumption and production

Port-city and multi-modal traffic model

- Predicts potential bottlenecks at the port gates
- · Incorporates port activity planning
- Includes current traffic data in the city to detect upcoming congestion at gates
- Embeds sensors/information of gates' status
- Incorporates weather conditions that can impact sea-based traffic

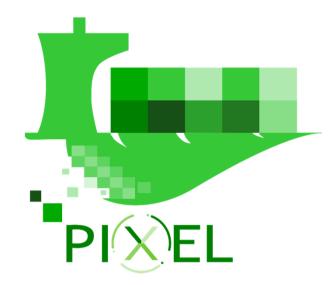
Emissions quantification & pollutants dispersion

- Predicts port emissions
- Emissions inventory
- Pollutants in air, water & soil
- Forecasts pollution end-points in time & space



The PIXEL use-cases ... and an open invitation

Four use cases confronting varying environmental issues


- Three small & medium ports to demonstrate the validity of the project results
- One large port to assure results' scalability

And an Open invitation to any other port interested in using our project results & tools

Thank You + Questions?

Baltic Ports Conference Stockholm September 4-6, 2019

This Communication is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº769355

Aristos Halatsis halatsis@certh.gr Senior Project Manager **CERTH/HIT**